Climate change has the potential to impact the generation of renewable energy significantly subject to location and equipment specifications. As the penetration of renewable energy in the energy systems keeps increasing, this impact needs be systematically assessed so that investment and reliability information is accurate. Australia represents an ideal study case characterized by its frequency of extreme weather events and the recent and planned growth in the renewable energy sector. In this study, we model and quantify the long-term temperature de-rating impact of utility-scale solar photovoltaic and wind power generation over Australia. Using climate projections simulated by six Global Circulation Models and the CSIRO's Cubic Conformal Atmospheric Model, we analyze half-hourly time series of key weather variables such as temperature, surface solar irradiance, and wind speed for 1980–2060 at two sites where variable renewable generators are located, or are likely to be located in the future based on the current Integrated System Plan by the Australian Energy Market Operator. We also built power conversion models for the temperature de-rating of solar and wind power with added focus on high temperature scenarios. We found that the general temporal trends in annual solar and wind power generation due to climate change are small, being at the order of 0.1% of their average production per decade. However, for peak temperature events, which coincide with the peak power demand and, generally, high prices, the temperature de-rating impact can be much more substantial and disruptive.

3.
AEMO
, see https://aemo.com.au/-/media/files/major-publications/ris/2020/renewable-integration-study-stage-1.pdf for “
Renewable Integration Study: Stage 1 Report
,
2020b
.”
4.
Bennett
,
J. C.
,
Grose
,
M. R.
,
Corney
,
S. P.
,
White
,
C. J.
,
Holz
,
G. K.
,
Katzfey
,
J. J.
,
Post
,
D. A.
, and
Bindoff
,
N. L.
, “
Performance of an empirical bias-correction of a high-resolution climate dataset
,”
Int. J. Climatol.
34
,
2189
(
2014
).
5.
Chouinard
,
C.
,
Béland
,
M.
, and
McFarlane
,
N.
, “
A simple gravity wave drag parametrization for use in medium‐range weather forecast models
,”
Atmosphere–Ocean
24
,
91
110
(
1986
).
6.
CSIRO and Bureau of Meteorology
, “
Climate change in Australia
,” in
Climate Change in Australia Information for Australia's Natural Resource Management Regions: Technical Report
(
CSIRO and Bureau of Meteorology
,
2015
).
7.
Dobos
,
A. P.
,
PVWatts Version 5 Manual
(
National Renewable Energy Laboratory
,
NREL
,
2014
).
8.
Erbs
,
D. G.
,
Klein
,
S. A.
, and
Duffie
,
J. A.
, “
Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation
,”
Sol. Energy
28
,
293
(
1982
).
9.
Freidenreich
,
S. M.
and
Ramaswamy
,
V.
, “
A new multiple-band solar radiative parameterization for general circulation models
,”
J. Geophys. Res. Atmos.
104
,
31389
31409
, (
1999
).
10.
Grose
,
M. R.
,
Risbey
,
J. S.
, and
Whetton
,
P. H.
, “
Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes
,’”
Clim. Change
140
,
307
(
2017
).
11.
Holmgren
,
W. F.
,
Hansen
,
C. W.
, and
Mikofski
,
M. A.
, “
Pvlib Python: A Python package for modeling solar energy systems
,”
J. Open Source Software
3
(
29
),
884
(
2018
).
12.
Hurley
,
P.
, “
Modelling mean and turbulence fields in the dry convective boundary layer with the eddy-diffusivity/mass-flux approach
,”
Boundary-Layer Meteorol.
125
,
525
(
2007
).
13.
Jeuken
,
A. B. M.
,
Siegmund
,
P. C.
,
Heijboer
,
L. C.
,
Feichter
,
J.
, and
Bengtsson
,
L.
, “
On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation
,”
J. Geophys. Res.
101
,
16939
16950
, (
1996
).
14.
Kowalczyk
,
E. A.
,
Stevens
,
L.
,
Law
,
R. M.
,
Dix
,
M.
,
Wang
,
Y. P.
,
Harman
,
I. N.
,
Haynes
,
K.
,
Srbinovsky
,
J.
,
Pak
,
B.
, and
Ziehn
,
T.
, “
The land surface model component of ACCESS: Description and impact on the simulated surface climatology
,”
Aust. Meteorol. Oceanogr. J.
63
,
65
(
2013
).
15.
Lahouar
,
A.
and
Ben Hadj Slama
,
J.
, “
Hour-ahead wind power forecast based on random forests
,”
Renewable Energy
109
,
529
(
2017
).
16.
Lin
,
Y. L.
,
Farley
,
R. D.
, and
Orville
,
H. D.
, “
Bulk parameterization of the snow field in a cloud model
,”
J. Clim. Appl. Meteorol.
22
,
1065
(
1983
).
17.
McGregor
,
J. L.
, “
A new convection scheme using simple closure
,” in
Current Issues in the Parameterization of Convection: Extended Abstracts of Presentations at the Fifteenth Annual BMRC Modelling Workshop
, edited by
P. J.
Meighen
and
A. J.
Hollis
(
Bureau of Meteorology Research Centre
,
2003
).
18.
McGregor
,
J. L.
,
C-CAM Geometric Aspects and Dynamical Formulation
, CSIRO Atmospheric Research Technical Paper 70 (Issue c) (
CSIRO
,
2005
a).
19.
McGregor
,
J. L.
, “
Geostrophic adjustment for reversibly staggered grids
,”
Mon. Weather Rev.
133
,
1119
(
2005
b).
20.
McGregor
,
J. L.
and
Dix
,
M. R.
, “
An updated description of the conformal-cubic atmospheric model
,” in
High Resolution Numerical Modelling of the Atmosphere and Ocean
(
Springer
,
2008
).
21.
Nunez
,
M.
and
Li
,
Y.
, “
A cloud-based reconstruction of surface solar radiation trends for Australia
,”
Theor. Appl. Climatol.
91
,
59
(
2008
).
22.
RenewEconomy
, see https://reneweconomy.com.au/australias-main-grid-reaches-50-per-cent-renewables-for-first-time-17935/ for “
Australia's Main Grid Reaches 50 Percent Renewables for First Time | RenewEconomy
” (last accessed November 6,
2019
).
23.
RenewEconomy
, see https://reneweconomy.com.au/west-australia-grid-officially-hits-more-than-50-renewables-for-first-time-21842/ for “
West Australia Grid Officially Hits More than 50% Renewables for First Time | RenewEconomy
” (last accessed February 10,
2020
).
24.
Rotstayn
,
L. D.
, “
A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes
,”
Q. J. R. Meteorol. Soc.
123
,
1227
(
1997
).
25.
Rotstayn
,
L. D.
,
Collier
,
M. A.
,
Mitchell
,
R. M.
,
Qin
,
Y.
,
Campbell
,
S. K.
, and
Dravitzki
,
S. M.
, “
Simulated enhancement of ENSO-related rainfall variability due to Australian dust
,”
Atmos. Chem. Phys.
11
,
6575
(
2011
).
26.
Rotstayn
,
L. D.
and
Lohmann
,
U.
, “
Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme
,”
J. Geophys. Res. Atmos.
107
,
AAC-20
, (
2002
).
27.
Schmidt
,
F.
, “
Variable fine mesh in spectral global models
,”
Beitr. Phys. Atmos.
50
,
211
217
(
1977
).
28.
Schwarzkopf
,
M. D.
and
Ramaswamy
,
V.
, “
Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment
,”
J. Geophys. Res. Atmos.
104
,
9467
9488
, (
1999
).
30.
Solaun
,
K.
and
Cerdá
,
E.
, “
Climate change impacts on renewable energy generation: A review of quantitative projections
,”
Renewable Sustainable Energy Rev.
116
,
109415
(
2019
).
31.
Thatcher
,
M.
and
Hurley
,
P.
, “
Simulating Australian urban climate in a mesoscale atmospheric numerical model
,”
Boundary-Layer Meteorol.
142
,
149
(
2012
).
32.
Thatcher
,
M. J.
, “
Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia
,”
Energy
32
,
1647
1659
(
2007
).
33.
Thatcher
,
M.
and
McGregor
,
J. L.
, “
Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model
,”
Mon. Weather Rev.
137
,
1742
(
2009
).
34.
Troccoli
,
A.
,
Muller
,
K.
,
Coppin
,
P.
,
Davy
,
R.
,
Russell
,
C.
, and
Hirsch
,
A. L.
, “
Long-term wind speed trends over Australia
,”
J. Clim.
25
,
170
(
2012
).
35.
Uhe
,
P.
and
Thatcher
,
M.
, “
A spectral nudging method for the ACCESS1.3 atmospheric model
,”
Geosci. Model Dev.
8
,
1645
(
2015
).
36.
Wild
,
M.
,
Gilgen
,
H.
,
Roesch
,
A.
,
Ohmura
,
A.
,
Long
,
C. N.
,
Dutton
,
E. C.
,
Forgan
,
B.
,
Kallis
,
A.
,
Russak
,
V.
, and
Tsvetkov
,
A.
, “
From dimming to brightening: Decadal changes in solar radiation at earth's surface
,”
Science
308
,
847
(
2005
).
37.
Zelinka
,
M. D.
,
Myers
,
T. A.
,
McCoy
,
D. T.
,
Po-Chedley
,
S.
,
Caldwell
,
P. M.
,
Ceppi
,
P.
,
Klein
,
S. A.
, and
Taylor
,
K. E.
, “
Causes of higher climate sensitivity in CMIP6 models
,”
Geophys. Res. Lett.
47
,
e2019GL085782
, (
2020
).

Supplementary Material

You do not currently have access to this content.