Photovoltaics (PV), the primary use of solar energy, is growing rapidly. However, the variable output of PV under changing weather conditions may hinder the large-scale deployment of PV. In this study, we propose a two-stage classification-prediction framework to predict contemporaneous PV power output from sky images (a so-called “nowcast”), and compare it with an end-to-end convolution neural network (CNN). The proposed framework first classifies input images into different sky conditions and then the classified images are sent to specific sub-models for PV output prediction. Two types of classifiers are developed and compared: (1) a CNN-based classifier trained on clear sky index (CSI)-labeled sky images and (2) a physics-based non-parametric classifier based on a threshold of fractional cloudiness of sky images. Different numbers of classification categories are also examined. The results suggest that the cloudiness-based classifier is more suitable than the CSI-based classifier for the framework, and the 3-class classification (i.e., sunny, cloudy, overcast) is found to be the optimal choice. We then fine-tune the cloudiness threshold for the non-parametric classifier and tailor the architecture for each sky-condition-specific sub-model. Under the best design, the proposed framework can achieve a root mean squared error (RMSE) of 2.20 kW (relative to a 30 kW rated PV array) on the test set comprising 18 complete days (9 sunny, RMSE = 0.69 kW; 9 cloudy, RMSE = 3.06 kW). Compared with the end-to-end CNN baseline model, the overall prediction performance can be improved by 6% (7% in sunny and 6% in cloudy), with 6% fewer trainable parameters needed in the architecture.

1.
International Renewable Energy Agency
, https://www.irena.org/solar for “
Solar energy data
” (last accessed March 8,
2020
).
2.
SolarPower Europe,
Global market outlook for solar power 2018–2022
” (
SolarPower Europe
,
2018
).
3.
International Energy Agency
, https://www.iea.org/topics/renewables/solar/ for “
Solar energy
,” (last accessed November 12,
2019
).
4.
L. S.
Nathan
, “
Research opportunities to advance solar energy utilization
,”
Science
351
,
aad1920
(
2016
).
5.
S. J.
Davis
,
N. S.
Lewis
,
M.
Shaner
,
S.
Aggarwal
,
D.
Arent
,
I. L.
Azevedo
,
S. M.
Benson
,
T.
Bradley
,
J.
Brouwer
,
Y. M.
Chiang
,
C. T.
Clack
,
A.
Cohen
,
S.
Doig
,
J.
Edmonds
,
P.
Fennell
,
C. B.
Field
,
B.
Hannegan
,
B. M.
Hodge
,
M. I.
Hoffert
,
E.
Ingersoll
,
P.
Jaramillo
,
K. S.
Lackner
,
K. J.
Mach
,
M.
Mastrandrea
,
J.
Ogden
,
P. F.
Peterson
,
D. L.
Sanchez
,
D.
Sperling
,
J.
Stagner
,
J. E.
Trancik
,
C. J.
Yang
, and
K.
Caldeira
, “
Net-zero emissions energy systems
,”
Science
360
,
eaas9793
(
2018
).
6.
International Renewable Energy Agency,
Global energy transformation: A roadmap to 2050 (2019 edition)
,” (
Abu Dhabi
,
2019
).
7.
Y.
Sun
, “
Short-term solar forecast using convolutional neural networks with sky images
,” Ph.D. dissertation (
Stanford University
,
2019
).
8.
P.
Ineichen
, “
Comparison of eight clear sky broadband models against 16 independent data banks
,”
Sol. Energy
80
,
468
478
(
2006
).
9.
R.
Marquez
,
H. T.
Pedro
, and
C. F.
Coimbra
, “
Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs
,”
Sol. Energy
92
,
176
188
(
2013
).
10.
Y.
Sun
,
V.
Venugopal
, and
A. R.
Brandt
, “
Short-term solar power forecast with deep learning: Exploring optimal input and output configuration
,”
Sol. Energy
188
,
730
741
(
2019
).
11.
U. K.
Das
,
K. S.
Tey
,
M.
Seyedmahmoudian
,
S.
Mekhilef
,
M. Y. I.
Idris
,
W.
Van Deventer
,
B.
Horan
, and
A.
Stojcevski
, “
Forecasting of photovoltaic power generation and model optimization: A review
,”
Renewable Sustainable Energy Rev.
81
,
912
928
(
2018
).
12.
R. H.
Inman
,
H. T.
Pedro
, and
C. F.
Coimbra
, “
Solar forecasting methods for renewable energy integration
,”
Prog. Energy Combust. Sci.
39
,
535
576
(
2013
).
13.
F.
Barbieri
,
S.
Rajakaruna
, and
A.
Ghosh
, “
Very short-term photovoltaic power forecasting with cloud modeling: A review
,”
Renewable Sustainable Energy Rev.
75
,
242
263
(
2017
).
14.
R.
Ahmed
,
V.
Sreeram
,
Y.
Mishra
, and
M. D.
Arif
, “
A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization
,”
Renewable Sustainable Energy Rev.
124
,
109792
(
2020
).
15.
Y.
Sun
,
G.
Szűcs
, and
A. R.
Brandt
, “
Solar PV output prediction from video streams using convolutional neural networks
,”
Energy Environ. Sci.
11
,
1811
1818
(
2018
).
16.
C.
Voyant
,
G.
Notton
,
S.
Kalogirou
,
M.-L.
Nivet
,
C.
Paoli
,
F.
Motte
, and
A.
Fouilloy
, “
Machine learning methods for solar radiation forecasting: A review
,”
Renewable Energy
105
,
569
582
(
2017
).
17.
C.
Chen
,
S.
Duan
,
T.
Cai
, and
B.
Liu
, “
Online 24-h solar power forecasting based on weather type classification using artificial neural network
,”
Sol. Energy
85
,
2856
2870
(
2011
).
18.
Y.
Chu
,
H. T.
Pedro
,
L.
Nonnenmacher
,
R. H.
Inman
,
Z.
Liao
, and
C. F.
Coimbra
, “
A smart image-based cloud detection system for intrahour solar irradiance forecasts
,”
J. Atmos. Oceanic Technol.
31
,
1995
2007
(
2014
).
19.
Y.
Chu
,
M.
Li
,
H. T.
Pedro
, and
C. F.
Coimbra
, “
Real-time prediction intervals for intra-hour DNI forecasts
,”
Renewable Energy
83
,
234
244
(
2015
).
20.
Y.
Chu
,
B.
Urquhart
,
S. M.
Gohari
,
H. T.
Pedro
,
J.
Kleissl
, and
C. F.
Coimbra
, “
Short-term reforecasting of power output from a 48 MWe solar PV plant
,”
Sol. Energy
112
,
68
77
(
2015
).
21.
M.
Abuella
and
B.
Chowdhury
, “
Solar power forecasting using artificial neural networks
,”
North American Power Symposium
(NAPS) (
2015
).
22.
Y.
Lecun
,
Y.
Bengio
, and
G.
Hinton
, “
Deep learning
,”
Nature
521
,
436
444
(
2015
).
23.
D.
Pothineni
,
M. R.
Oswald
,
J.
Poland
, and
M.
Pollefeys
, “
KloudNet: Deep learning for sky image analysis and irradiance forecasting
,” in
GCPR 2018
, Lecture Notes in Computer Science Vol.
1
, edited by
T.
Brix
,
A.
Bruhn
, and
M.
Fritz
(
Springer
,
Cham
,
2019
) pp.
535
551
.
24.
H.
Jiang
,
Y.
Gu
,
Y.
Xie
,
R.
Yang
, and
Y.
Zhang
, “
Solar Irradiance Capturing in Cloudy Sky Days–A Convolutional Neural Network Based Image Regression Approach
,”
IEEE Access
8
,
22235
22248
(
2020
).
25.
J.
Shi
,
W.
Lee
,
Y.
Liu
,
Y.
Yang
, and
P.
Wang
, “
Forecasting power output of photovoltaic systems based on weather classification and support vector machines
,”
IEEE Trans. Ind. Appl.
48
,
1064
1069
(
2012
).
26.
H.
Yang
,
C.
Huang
,
Y.
Huang
, and
Y.
Pai
, “
A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output
,”
IEEE Trans. Sustainable Energy
5
,
917
926
(
2014
).
27.
A.
da Rosa
, “
Fundamentals of renewable energy processes
,” arXiv:1011.1669v3 (
2009
).
28.
R.
Chauvin
,
J.
Nou
,
S.
Thil
,
A.
Traoré
, and
S.
Grieu
, “
Cloud detection methodology based on a sky-imaging system
,” in
Energy Procedia
(
Elsevier
,
2015
), Vol.
69
, pp.
1970
1980
.
29.

The NRBR ratio is generally defined as (R − B)/(R + B) in the literature. Here, we change it to (B − R)/(B + R) because we calculate the NRBR by dividing the difference between the first color channel and the third color channel of the image by the sum of these two channels. The Python OpenCV library is used to obtain the image frames from videos, which results in a “BGR” color channel order instead of “RGB.”

30.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
1998
).
31.
G.
Garcia-Gil
and
J. M.
Ramirez
, “
Fish-eye camera and image processing for commanding a solar tracker
,”
Heliyon
5
,
e01398
(
2019
).
You do not currently have access to this content.