Carbon fiber reinforced polymer (CFRP) composites are becoming popular due to their superior strength to weight ratio and stiffness properties. This study highlights the interlaminar debonding growth, which is considered one of the most frequent problems with composite materials. A three-blade horizontal axis water turbine (HAWT) was manufactured using IM7/Cycom5320-1 carbon/epoxy prepreg. During the process of manufacturing, a specific number of Teflon sheets were placed between the composite layers in two locations to create a separation between the layers and to investigate the delamination growth. Three different laminate stacking sequences were selected to be tested: [0°]4, [0°/90°]S, and [45°/−45°]S. The composite blades were placed in a water tunnel and run for 3 million revolutions. A thermography analysis was carried out to evaluate the propagation and growth of the delamination. A one-way fluid–structure interaction (FSI) model was created and implemented to obtain the stress values along the blade. The results showed the influence of the composite lay-up orientation on the growth of the delamination. The unidirectional blades ([0°]4) showed the lowest amount of propagation, while the cross-ply ([0°/90°]S) showed the most delamination growth. The bottom location (near the root) showed the maximum delamination. Both sides of the blades showed significant delamination growth. However, the back side showed more interlaminar debonding growth than the front side. After three million revolutions, the percentage of debonding growth for the bottom/back side of the blades was 6.58%, 36.25%, and 27.63% for [0°]4, [0°/90°]S, and [45°/−45°]S, respectively.

1.
H. J.
Vermaak
,
K.
Kusakana
, and
S. P.
Koko
, “
Status of micro-hydrokinetic river technology in rural applications: A review of literature
,”
Renewable Sustainable Energy Rev.
29
,
625
633
(
2014
).
2.
C.
Gopal
,
M.
Mohanraj
,
P.
Chandramohan
, and
P.
Chandrasekar
, “
Renewable energy source water pumping systems—A literature review
,”
Renewable Sustainable Energy Rev.
25
,
351
370
(
2013
).
3.
T.
Sarver
,
A.
Al-Qaraghuli
, and
L. L.
Kazmerski
, “
A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches
,”
Renewable sustainable energy Rev.
22
,
698
733
(
2013
).
4.
N. A.
Kelly
and
T. L.
Gibson
, “
Improved photovoltaic energy output for cloudy conditions with a solar tracking system
,”
Sol. Energy
83
,
2092
2102
(
2009
).
5.
H.
Akimoto
,
K.
Tanaka
, and
K.
Uzawa
, “
A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents
,”
Renewable energy
57
,
283
288
(
2013
).
6.
I. S.
Hwang
,
Y. H.
Lee
, and
S. J.
Kim
, “
Optimization of cycloidal water turbine and the performance improvement by individual blade control
,”
Appl. Energy
86
,
1532
1540
(
2009
).
7.
M.
Patel
,
K.
Saurabh
,
V. B.
Prasad
, and
J.
Subrahmanyam
, “
High temperature C/C–SiC composite by liquid silicon infiltration: A literature review
,”
Bull. Mater. Sci.
35
,
63
73
(
2012
).
8.
J. W.
Schmidt
,
A.
Bennitz
,
B.
Täljsten
,
P.
Goltermann
, and
H.
Pedersen
, “
Mechanical anchorage of FRP tendons–a literature review
,”
Constr. Build. Mater.
32
,
110
121
(
2012
).
9.
M.
Gholami
,
A. R. M.
Sam
,
J. M.
Yatim
, and
M. M.
Tahir
, “
A review on steel/CFRP strengthening systems focusing environmental performance
,”
Constr. Build. Mater.
47
,
301
310
(
2013
).
10.
C.
Baley
,
P.
Davies
,
Y.
Grohens
, and
G.
Dolto
, “
Application of interlaminar tests to marine composites. A literature review
,”
Appl. Compos. Mater.
11
,
99
126
(
2004
).
11.
C. S.
Smith
,
Design of Marine Structures in Composite Materials
(
Elsevier
,
London
,
1990
).
12.
I. M.
Daniel
,
O.
Ishai
,
I. M.
Daniel
, and
I.
Daniel
,
Engineering Mechanics of Composite Materials
(
Oxford university Press New York
,
1994
), Vol.
3
.
13.
B. D.
Agarwal
,
L. J.
Broutman
, and
K.
Chandrashekhara
,
Analysis and Performance of Fiber Composites
(
John Wiley & Sons
,
2018
).
14.
S. T.
Lau
,
M. A
Said
, and
M. Y.
Yaakob
, “
On the effect of geometrical designs and failure modes in composite axial crushing: A literature review
,”
Compos. Struct.
94
,
803
812
(
2012
).
15.
F. M.
Mohee
,
A.
Al-Mayah
, and
A.
Plumtree
, “
Anchors for CFRP plates: State-of-the-art review and future potential
,”
Composites Part B
90
,
432
442
(
2016
).
16.
C.
Laird
and
G.
Smith
, “
Crack propagation in high stress fatigue
,”
Philos. Mag.
7
,
847
857
(
1962
).
17.
D.
Shu
and
Y.-W.
Mai
, “
Effect of stitching on interlaminar delamination extension in composite laminates
,”
Compos. Sci. Technol.
49
,
165
171
(
1993
).
18.
A. J.
Russell
and
K. N.
Street
, “
Moisture and temperature effects on the mixed-mode delamination fracture of unidirectional graphite/epoxy
,” in
Delamination and Debonding of Materials
(
ASTM International
,
1985
).
19.
D. J.
Elder
,
R. S.
Thomson
,
M. Q.
Nguyen
, and
M. L.
Scott
, “
Review of delamination predictive methods for low speed impact of composite laminates
,”
Compos. Struct.
66
,
677
683
(
2004
).
20.
A.
Garg
and
O.
Ishai
, “
Hygrothermal influence on delamination behavior of graphite/epoxy laminates
,”
Eng. Fract. Mech.
22
,
413
427
(
1985
).
21.
F. X.
de Charentenay
,
J. M.
Harry
,
Y. J.
Prel
, and
M. L.
Benzeggagh
, “
Characterizing the effect of delamination defect by mode I delamination test
,” in
Effects of Defects in Composite Materials
(
ASTM International
,
1984
).
22.
R.
Olsson
,
J.
Thesken
,
F.
Brandt
,
N.
Jönsson
, and
S.
Nilsson
, “
Investigations of delamination criticality and the transferability of growth criteria
,”
Compos. Struct.
36
,
221
247
(
1996
).
23.
Z.
Hashin
, “
Failure criteria for unidirectional fiber composites
,”
J. Appl. Mech.
47
,
329
334
(
1980
).
24.
J.
Wiegand
,
N.
Petrinic
, and
B.
Elliott
, “
An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites
,”
Compos. Sci. Technol.
68
,
2511
2517
(
2008
).
25.
R.
Sadeghian
,
S.
Gangireddy
,
B.
Minaie
, and
K.-T.
Hsiao
, “
Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance
,”
Composites Part A
37
,
1787
1795
(
2006
).
26.
D.
Wilkins
,
J.
Eisenmann
,
R.
Camin
,
W.
Margolis
, and
R.
Benson
, “
Characterizing delamination growth in graphite-epoxy
,” in
Damage in Composite Materials: Basic Mechanisms, Accumulation, Tolerance, and Characterization
(
ASTM International
,
1982
).
27.
K.
Dransfield
,
C.
Baillie
, and
Y.-W.
Mai
, “
Improving the delamination resistance of CFRP by stitching—A review
,”
Compos. Sci. Technol.
50
,
305
317
(
1994
).
28.
W. J.
Cantwell
and
J.
Morton
, “
The impact resistance of composite materials—A review
,”
Composites
22
,
347
362
(
1991
).
29.
E.
Fuoss
,
P. V.
Straznicky
, and
C.
Poon
, “
Effects of stacking sequence on the impact resistance in composite laminates—Part 1: Parametric study
,”
Compos. Struct.
41
,
67
77
(
1998
).
30.
S.
Abrate
, “
Impact on laminated composite materials
,”
Appl. Mech. Rev.
44
,
155
190
(
1991
).
31.
H.
Ho-Cheng
and
C.
Dharan
, “
Delamination during drilling in composite laminates
,”
J. Eng. Ind.
112
,
236
239
(
1990
).
32.
M. S.
Selig
and
J. J.
Guglielmo
, “
High-lift low Reynolds number airfoil design
,”
J. Aircr.
34
,
72
79
(
1997
).
33.
M.
Attaran
, “
The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing
,”
Bus. Horiz.
60
,
677
688
(
2017
).
34.
J.
Kratz
,
K.
Hsiao
,
G.
Fernlund
, and
P.
Hubert
, “
Thermal models for MTM45-1 and Cycom 5320 out-of-autoclave prepreg resins
,”
J. Compos. Mater.
47
,
341
352
(
2013
).
35.
S.
Anandan
,
G.
Dhaliwal
,
S.
Ganguly
, and
K.
Chandrashekhara
, “
Investigation of sandwich composite failure under three-point bending: Simulation and experimental validation
,”
J. Sandwich Struct. Mater.
(
2018
).
36.
S.
Anandan
,
G.
Dhaliwal
,
Z.
Huo
,
K.
Chandrashekhara
,
N.
Apetre
, and
N.
Iyyer
, “
Curing of thick thermoset composite laminates: Multiphysics modeling and experiments
,”
Appl. Compos. Mater.
25
,
1155
1168
(
2018
).
37.
W.
Minkina
and
S.
Dudzik
,
Infrared Thermography: Errors and Uncertainties
(
John Wiley & Sons
,
2009
).
38.
O.
Breitenstein
,
W.
Warta
,
M. C.
Schubert
, and
M.
Langenkamp
,
Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials
(
Springer
,
2018
), Vol.
10
.
39.
Y.
Bazilevs
,
M. C.
Hsu
,
J.
Kiendl
, and
D.
Benson
, “
A computational procedure for prebending of wind turbine blades
,”
Int. J. Numer. Methods Eng.
89
,
323
336
(
2012
).
40.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
1605
(
1994
).
41.
N.
Kolekar
and
A.
Banerjee
, “
A coupled hydro-structural design optimization for hydrokinetic turbines
,”
J. Renewable Sustainable Energy
5
,
053146
(
2013
).
42.
M.
Rahimian
,
J.
Walker
, and
I.
Penesis
, “
Performance of a horizontal axis marine current turbine–A comprehensive evaluation using experimental, numerical, and theoretical approaches
,”
Energy
148
,
965
976
(
2018
).
43.
T.
Javaherchi
,
S.
Antheaume
, and
A.
Aliseda
, “
Hierarchical methodology for the numerical simulation of the flow field around and in the wake of horizontal axis wind turbines: Rotating reference frame, blade element method and actuator disk model
,”
Wind Eng.
38
,
181
202
(
2014
).
You do not currently have access to this content.