The irradiance incident on photovoltaic (PV) generators can considerably exceed the expected clear sky irradiance. Due to this phenomenon, called cloud enhancement (CE), the maximum power of the PV generator can exceed the rated power of the inverter connecting the generator to the grid. CE event characteristics and the effects of CE on the electrical operation of PV generators were studied based on measured irradiances and cloud edge velocities. Over eleven months in San Diego, California, the highest measured peak irradiance was 1466 W/m2. In addition, the highest simulated average irradiances for up to 1 MW generators were over 1400 W/m2. The largest lengths for CE events exceeding 1000 W/m2 were multiple kilometers. These results indicate that even large utility-scale PV power plants can be affected significantly by CE events. Moreover, the operation of three PV plants was simulated during around 2400 measured CE events with a detailed spatiotemporal model. The effects of inverter sizing on the operation of the plants were also studied, and the negative impacts of CE on the operation of PV systems were shown to increase with the increasing DC/AC ratio. During the CE events, the energy losses due to power curtailment were from 5% to 50% of the available energy production. While CE affects the operation of the PV plants, these effects were small in terms of aggregate energy since CE events that most strongly impact PV system operation are very rare, meaning that CE does not cause major problems for the operation of PV systems.

1.
Badescu
,
V.
, “
Verification of some very simple clear and cloudy sky models to evaluate global solar irradiance
,”
Sol. Energy
61
,
251
264
(
1997
).
2.
Callegari
,
J. M. S.
,
Cupertino
,
A. F.
,
Ferreira
,
V. N.
,
Brito
,
E. M. S.
,
Mendes
,
V. F.
, and
Pereira
,
H. A.
, “
Adaptive DC-link voltage control strategy to increase PV inverter lifetime
,”
Microelectron. Reliab.
100–101
,
113439
(
2019
).
3.
do Nascimento
,
L. R.
,
de Souza Viana
,
T.
,
Campos
,
R. A.
, and
Rüther
,
R.
, “
Extreme solar overirradiance events: Occurrence and impacts on utility-scale photovoltaic power plants in Brazil
,”
Sol. Energy
186
,
370
381
(
2019
).
4.
Espinosa-Gavira
,
M. J.
,
Agüera-Pérez
,
A.
,
de la Rosa
,
J. J. G.
,
Palomares-Salas
,
J. C.
, and
Sierra-Fernández
,
J. M.
, “
An on-line low-cost irradiance monitoring network with sub-second sampling adapted to small-scale PV systems
,”
Sensors
18
,
3405
(
2018
).
5.
Gueymard
,
C. A.
, “
Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 1: Impacts on global horizontal irradiance
,”
Sol. Energy
153
,
755
765
(
2017a
).
6.
Gueymard
,
C. A.
, “
Cloud and albedo enhancement impacts on solar irradiance using high-frequency measurements from thermopile and photodiode radiometers. Part 2: Performance of separation and transposition models for global tilted irradiance
,”
Sol. Energy
153
,
766
779
(
2017b
).
7.
Hasegawa
,
K.
,
Tsuzaki
,
K.
, and
Nishizawa
,
S.
, “
DC-bias-voltage dependence of degradation of aluminum electrolytic capacitors
,”
Microelectron. Reliab.
83
,
115
118
(
2018
).
8.
Imenes
,
A. G.
,
Yordanov
,
G. H.
,
Midtgård
,
O.-M.
, and
Saetre
,
T. O.
, “
Development of a test station for accurate in situ I-V curve measurements of photovoltaic modules in Southern Norway
,” in
Proceedings of the 37th IEEE Photovoltaic Specialists Conference
(
2011
), pp.
3153
3158
.
9.
Järvelä
,
M.
,
Lappalainen
,
K.
, and
Valkealahti
,
S.
, “
Cloud enhancement phenomenon and its effect on PV generators
,” in
Proceedings of 35th European Photovoltaic Solar Energy Conference
(
2018
), pp.
1964
1968
.
10.
Järvelä
,
M.
,
Lappalainen
,
K.
, and
Valkealahti
,
S.
, “
Characteristics of the cloud enhancement phenomenon and PV power plants
,”
Sol. Energy
196
,
137
145
(
2020
).
11.
Lappalainen
,
K.
and
Valkealahti
,
S.
, “
Recognition and modelling of irradiance transitions caused by moving clouds
,”
Sol. Energy
112
,
55
67
(
2015
).
12.
Lappalainen
,
K.
and
Valkealahti
,
S.
, “
Analysis of shading periods caused by moving clouds
,”
Sol. Energy
135
,
188
196
(
2016
).
13.
Lappalainen
,
K.
and
Valkealahti
,
S.
, “
Effects of PV array layout, electrical configuration and geographic orientation on mismatch losses caused by moving clouds
,”
Sol. Energy
144
,
548
555
(
2017
).
14.
Luoma
,
J.
,
Kleissl
,
J.
, and
Murray
,
K.
, “
Optimal inverter sizing considering cloud enhancement
,”
Sol. Energy
86
,
421
429
(
2012
).
15.
Mäki
,
A.
,
Valkealahti
,
S.
, and
Leppäaho
,
J.
, “
Operation of series-connected silicon-based photovoltaic modules under partial shading conditions
,”
Prog. Photovoltaics: Res. Appl.
20
,
298
309
(
2012
).
16.
Ong
,
S.
,
Campbell
,
C.
,
Denholm
,
P.
,
Margolis
,
R.
, and
Heath
,
G.
, “
Land-use requirements for solar power plants in the United States
,”
Report No. NREL/TP-6A20-56290
(National Renewable Energy Laboratory, Golden, CO, USA,
2013
).
17.
Pecenak
,
Z. K.
,
Mejia
,
F. A.
,
Kurtz
,
B.
,
Evan
,
A.
, and
Kleissl
,
J.
, “
Simulating irradiance enhancement dependence on cloud optical depth and solar zenith angle
,”
Sol. Energy
136
,
675
681
(
2016
).
18.
Peippo
,
K.
and
Lund
,
P. D.
, “
Optimal sizing of solar array and inverter in grid-connected photovoltaic systems
,”
Sol. Energy Mater. Sol. Cells
32
,
95
114
(
1994
).
19.
Rampinelli
,
G. A.
,
Krenzinger
,
A.
, and
Chenlo Romero
,
F.
, “
Mathematical models for efficiency of inverters used in grid connected photovoltaic systems
,”
Renewable Sustainable Energy Rev.
34
,
578
587
(
2014
).
20.
Tapakis
,
R.
and
Charalambides
,
A. G.
, “
Enhanced values of global irradiance due to the presence of clouds in eastern Mediterranean
,”
Renewable Energy
62
,
459
467
(
2014
).
21.
Tomson
,
T.
, “
Transient processes of solar radiation
,”
Theor. Appl. Climatol.
112
,
403
408
(
2013
).
22.
Wang
,
G.
,
Kurtz
,
B.
, and
Kleissl
,
J.
, “
Cloud base height from sky imager and cloud speed sensor
,”
Sol. Energy
131
,
208
221
(
2016
).
23.
Wang
,
H. X.
,
Munoz-García
,
M. A.
,
Moreda
,
G. P.
, and
Alonso-García
,
M. C.
, “
Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations
,”
Renewable Energy
118
,
709
717
(
2018
).
24.
Weigl
,
T.
,
Nagl
,
L.
,
Weizenbeck
,
J.
,
Zehner
,
M.
,
Augel
,
M.
,
Öchsner
,
P.
,
Giesler
,
B.
,
Becker
,
G.
,
Mayer
,
O.
,
Betts
,
T. R.
, and
Gottschalg
,
R.
, “
Modelling and validation of spatial irradiance characteristics for localised irradiance fluctuations and enhancements
,” in
Proceedings of 27th European Photovoltaic Solar Energy Conference
(
2012
), pp.
3801
3804
.
25.
Yordanov
,
G. H.
,
Midtgård
,
O.-M.
,
Saetre
,
T. O.
,
Nielsen
,
H. K.
, and
Norum
,
L. E.
, “
Overirradiance (cloud enhancement) events at high latitudes
,”
IEEE J. Photovoltaics
3
,
271
277
(
2013a
).
26.
Yordanov
,
G. H.
,
Saetre
,
T. O.
, and
Midtgård
,
O.-M.
, “
100-millisecond resolution for accurate overirradiance measurements
,”
IEEE J. Photovoltaics
3
,
1354
1360
(
2013b
).
27.
Yordanov
,
G. H.
,
Saetre
,
T. O.
, and
Midtgård
,
O.-M.
, “
Extreme overirradiance events in Norway: 1.6 suns measured close to 60°N
,”
Sol. Energy
115
,
68
73
(
2015
).
28.
Zehner
,
M.
,
Weigl
,
T.
,
Hartmann
,
M.
,
Thaler
,
S.
,
Schrank
,
O.
,
Czakalla
,
M.
,
Mayer
,
B.
,
Betts
,
T. R.
,
Gottschalg
,
R.
,
Behrens
,
K.
,
König-Langlo
,
G.
,
Giesler
,
B.
,
Becker
,
G.
, and
Mayer
,
O.
, “
Energy loss due to irradiance enhancement
,” in
Proceedings of 26th European Photovoltaic Solar Energy Conference
(
2011
), pp.
3935
3938
.
29.
Zhang
,
J.
,
Watanabe
,
K.
,
Yoshino
,
J.
,
Kobayashi
,
T.
,
Hishikawa
,
Y.
, and
Doi
,
T.
, “
Physical process and statistical properties of solar irradiance enhancement observed under clouds
,”
Jpn. J. Appl. Phys., Part 1
57
,
08RG11
(
2018
).
30.
Zhu
,
J.
,
Bründlinger
,
R.
,
Mühlberger
,
T.
,
Betts
,
T. R.
, and
Gottschalg
,
R.
, “
Optimised inverter sizing for photovoltaic systems in high-latitude maritime climates
,”
IET Renewable Power Gener.
5
,
58
66
(
2011
).
You do not currently have access to this content.