Structural control methods are a promising way to improve the dynamic response of offshore wind turbines. In this study, the effectiveness of passive tuned mass damper (TMD) and hybrid mass damper (HMD) control is examined for suppressing the vibration in a monopile offshore wind turbine subjected to a combination of wind, wave, and seismic loads. A high-fidelity wind turbine model is established based on the multi-body dynamics simulation code SIMPACK. A reduced-order model of the wind turbine is, then, extracted from input-output time-domain response data, which is used to design an HMD controller using the H loop shaping approach. The controller is, then, applied in the high-fidelity multi-body model of the wind turbine, and an additional control force is applied using feedback from the displacement acceleration at the tower top. The performance of the passive TMD and HMD control systems is examined and compared in terms of the suppression of tower-top displacements under normal operating and parked conditions. The results revealed that the HMD control system can better reduce the tower-top displacement as compared to the passive TMD system before and during earthquakes, albeit at the expense of high input control power and large TMD displacements. However, the two control systems have a negative impact on the dynamic response of tower after the earthquake. Moreover, the investigation of controller gains indicated that the vibration suppression effect of HMD improves with the increase in control power, leading to larger TMD strokes.

1.
D. Y. C.
Leung
and
Y.
Yang
, “
Wind energy development and its environmental impact: A review
,”
Renewable Sustainable Energy Rev.
16
(
1
),
1031
1039
(
2012
).
2.
A.
Chehouri
,
R.
Younes
 et al., “
Review of performance optimization techniques applied to wind turbines
,”
Appl. Energy
142
,
361
388
(
2015
).
3.
Y.
Hu
and
E.
He
, “
Active structural control of a floating wind turbine with a stroke-limited hybrid mass damper
,”
J. Sound Vib.
410
,
447
472
(
2017
).
4.
E. I.
Katsanos
,
S.
Thöns
, and
C. Τ.
Georgakis
, “
Wind turbines and seismic hazard: A stateof-the-art review
,”
Wind Energy
19
,
2113
(
2016
).
5.
H.
Namik
and
K.
Stol
, “
Individual blade pitch control of floating offshore wind turbines
,”
Wind Energy
13
(
1
),
74
85
(
2010
).
6.
H.
Namik
and
K.
Stol
, “
Individual blade pitch control of a spar-buoy floating wind turbine
,”
IEEE Trans. Control Syst. Technol.
22
(
1
),
214
223
(
2014
).
7.
S.
Li
and
F.
Yang
, “
Load optimization control of large deep-water floating wind turbines
,”
J. Mech.
2
(
3
),
169
175
(
2014
).
8.
K. T.
Magar
,
M. J.
Balas
, and
S.
Frost
, “
Direct adaptive control for individual blade pitch control of wind turbines for load reduction
,”
J. Intell. Mater. Syst. Struct.
26
(
12
),
1564
1572
(
2015
).
9.
S.
Hashemi
and
S. M.
Zahrai
, “
Semi-active fuzzy control of nine-story nonlinear building with series combination of TMD and MR damper
,”
Modares Civil Eng. J.
19
(
2
),
209
222
(
2019
).
10.
A.
Abd-Elhamed
and
S.
Mahmoud
, “
Simulation analysis of TMD controlled building subjected to far-and near-fault records considering soil-structure interaction
,”
J. Build. Eng.
26
,
100930
(
2019
).
11.
Y.
Bigdeli
and
D.
Kim
, “
Damping effects of the passive control devices on structural vibration control: TMD, TLC and TLCD for varying total masses
,”
KSCE J. Civil Eng.
20
(
1
),
301
308
(
2016
).
12.
Z.
Lu
,
D.
Wang
, and
Y.
Zhou
, “
Experimental parametric study on wind-induced vibration control of particle tuned mass damper on a benchmark high-rise building
,”
Struct. Des. Tall Spec. Build.
26
(
8
),
e1359
(
2017
).
13.
B.
Spencer
and
S.
Nagarajaiah
, “
State of the art of structural control
,”
J. Struct. Eng.
129
(
7
),
845
856
(
2003
).
14.
T.
Soong
and
B.
Spencer
, “
Supplemental energy dissipation: State-of-the-art and state-of-the practice
,”
Eng. Struct.
24
,
243
259
(
2002
).
15.
H.
Zuo
,
K.
Bi
, and
H.
Hao
, “
Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards
,”
Eng. Struct.
141
,
303
315
(
2017
).
16.
M. A.
Lackner
and
M. A.
Rotea
, “
Passive structural control of offshore wind turbines
,”
Wind Energy
14
(
3
),
373
388
(
2011
).
17.
V. N.
Dinh
and
B.
Basu
, “
Passive control of floating offshore wind turbine nacelle and spar vibrations by multiple tuned mass dampers
,”
Struct. Control Health Monit.
22
(
1
),
152
176
(
2015
).
18.
Y.
Si
,
H. R.
Karimi
, and
H.
Gao
, “
Modelling and optimization of a passive structural control design for a spar-type floating wind turbine
,”
Eng. Struct.
69
,
168
182
(
2014
).
19.
J.
Arrigan
,
V.
Pakrashi
,
B.
Basu
, and
S.
Nagarajaiah
, “
Control of flapwise vibrations in wind turbine blades using semi-active tuned mass dampers
,”
Struct. Control Health Monit.
18
(
8
),
840
851
(
2011
).
20.
N.
Caterino
, “
Semi-active control of a wind turbine via magnetorheological dampers
,”
J. Sound Vib.
345
,
1
17
(
2015
).
21.
V. N.
Dinh
,
B.
Basu
, and
S.
Nagarajaiah
, “
Semi-active control of vibrations of spar type floating offshore wind turbines
,”
Smart Struct. Syst.
18
(
4
),
683
705
(
2016
).
22.
C.
Sun
, “
Semi-active control of monopile offshore wind turbines under multi-hazards
,”
Mech. Syst. Signal Process.
99
,
285
305
(
2018
).
23.
N.
Caterino
,
C. T.
Georgakis
,
M.
Spizzuoco
, and
A.
Occhiuzzi
, “
Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines
,”
Smart Struct. Syst.
18
(
1
),
75
92
(
2016
).
24.
J.
Chen
,
C.
Yuan
,
J.
Li
, and
Q.
Xu
, “
Semi-active fuzzy control of edgewise vibrations in wind turbine blades under extreme wind
,”
J. Wind Eng. Ind. Aerodyn.
147
,
251
261
(
2015
).
25.
S. J.
Dyke
,
B. F.
Spencer
,
P.
Quast
,
M. K.
Sain
,
D. C.
Kaspari
, and
T. T.
Soong
, “
Acceleration feedback control of MDOF structures
,”
J. Eng. Mech.
122
(
9
),
907
918
(
1996
).
26.
B.
Fitzgerald
,
B.
Basu
, and
S. R.
Nielsen
, “
Active tuned mass dampers for control of in-plane vibrations of wind turbine blades
,”
Struct. Control Health Monit.
20
(
12
),
1377
1396
(
2013
).
27.
B.
Fitzgerald
and
B.
Basu
, “
Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades
,”
J. Sound Vib.
333
(
23
),
5980
6004
(
2014
).
28.
M. A.
Lackner
and
M. A.
Rotea
, “
Structural control of floating wind turbines
,”
Mechatronics
21
,
704
719
(
2011
).
29.
M.
Rahman
,
Z. C.
Ong
,
W. T.
Chong
,
S.
Julai
, and
S. Y.
Khoo
, “
Performance enhancement of wind turbine systems with vibration control: A review
,”
Renewable Sustainable Energy Rev.
51
,
43
54
(
2015
).
30.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-mw reference wind turbine for offshore system development
,”
Report No. TP 500-38060
(
National Renewable Energy Laboratory
,
2008
).
31.
SIMPACK AG
,
SIMPACK Documentation
(
SIMPACK AG
,
2016
).
32.
B.
Luhmann
,
H.
Seyedin
, and
P. W.
Cheng
, “
Aero-structural dynamics of a flexible hub connection for load reduction on two-bladed wind turbines
,”
Wind Energy
20
(
3
),
521
535
(
2017
).
33.
Y.
Li
,
A. M.
Castro
,
J. E.
Martin
,
T.
Sinokrot
,
W.
Prescott
, and
P. M.
Carrica
, “
Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics
,”
Renewable Energy
101
,
1037
1051
(
2017
).
34.
H.
Link
,
W.
LaCava
,
J.
Van Dam
,
B.
McNiff
,
S.
Sheng
,
R.
Wallen
 et al., “
Gearbox reliability collaborative project report: Findings from phase 1 and phase 2 testing
,”
Report No. NREL/TP-5000e51885
(
National Renewable Energy Laboratory
,
2011
).
35.
X.
Jin
,
L.
Li
,
W.
Ju
,
Z.
Zhang
, and
X.
Yang
, “
Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines
,”
Renewable Energy
90
,
336
351
(
2016
).
36.
J. M.
Jonkman
and
M. L.
Buhl
, Jr.
, “
FAST user's guide
,”
Technical Report No. NREL/EL-500-38230
(
National Renewable Energy Laboratory
,
2005
).
37.
J.
Jonkman
and
W.
Musial
, “
Offshore code comparison collaboration (OC3) for IEA—task 23 offshore wind Technology and deployment
,”
Report No. NREL/TP-5000 [48191]
(
National Renewable Energy Laboratory (NREL)
,
Golden
,
CO
,
2010
).
38.
M.
Damgaard
,
V.
Zania
,
L. V.
Andersen
, and
L. B.
Ibsen
, “
Effects of soil–structure interaction on real time dynamic response of offshore wind turbines on monopiles
,”
Eng. Struct.
75
,
388
401
(
2014
).
39.
S.
Bhattacharya
and
S.
Adhikari
, “
Experimental validation of soil–structure interaction of offshore wind turbines
,”
Soil Dyn. Earthquake Eng.
31
,
805
816
(
2011
).
40.
E.
Lozano-Minguez
,
A. J.
Kolios
, and
F. P.
Brennan
, “
Multi-criteria assessment of offshore wind turbine support structures
,”
Renewable Energy
36
,
2831
2837
(
2011
).
41.
H.
Gao
and
K.
Kwok
, “
Optimization of tuned liquid column dampers
,”
Eng. Struct.
19
(
6
),
476
486
(
1997
).
42.
S.
Colwell
and
B.
Basu
, “
Tuned liquid column dampers in offshore wind turbines for structural control
,”
Eng. Struct.
31
,
358
368
(
2009
).
43.
M.
Lackner
, “
Controlling platform motions and reducing blade loads for floating wind turbines
,”
Wind Eng.
33
(
6
),
541
553
(
2009
).
44.
M.
Rotea
,
M.
Lackner
, and
R.
Saheba
, “
Active structural control of offshore wind turbines
,” in
48th AIAA Aerospace Science Meeting and Exhibit
,
Orlando, Florida
(
2010
).
45.
X.
Li
and
H.
Gao
, “
Load mitigation for a floating wind turbine via generalized H∞ structural control
,”
IEEE Trans. Ind. Electron.
63
(
1
),
332
342
(
2016
).
46.
D.
McFarlane
and
K.
Glover
,
Robust Controller Design Using Normalised Coprime Actor Plant Descriptions
, Lecture Notes Control and Information Sciences Vol.
138
(
Springer
,
1989
).
47.
D.
McFarlane
and
K.
Glover
, “
A loop shaping design procedure using synthesis
,”
IEEE Trans. Autom. Control
37
(
6
),
759
769
(
1992
).
48.
T.
Bakka
and
H. R.
Karimi
, “
Mixed H2/H∞ control design for wind turbine system with pole placement constraints
,” in
Proceedings of the 31st Chinese Control Conference
(
IEEE
,
2012
), pp.
4775
4780
.
You do not currently have access to this content.