The wind-energy (WE) industry relies on numerical weather prediction (NWP) forecast models as foundational or base models for many purposes, including wind-resource assessment and wind-power forecasting. During the Second Wind Forecast Improvement Project (WFIP2) in the Columbia River Basin of Oregon and Washington, a significant effort was made to improve NWP forecasts through focused model development, to include experimental refinements to the High Resolution Rapid Refresh (HRRR) model physics and horizontal grid spacing. In this study, the performance of an experimental version of HRRR that includes these refinements is tested against a control version, which corresponds to that of the operational HRRR run by National Oceanic and Atmospheric Administration/National Centers for Environmental Protection at the outset of WFIP2. The effects of horizontal grid resolution were also tested by comparing wind forecasts from the HRRR (with 3-km grid spacing) with those from a finer-resolution HRRR nest with 750-m grid spacing. Model forecasts are validated against accurate wind-profile measurements by three scanning, pulsed Doppler lidars at sites separated by a total distance of 71 km. Model skill and improvements in model skill, attributable to physics refinements and improved horizontal grid resolution, varied by season, by site, and during periods of atmospheric phenomena relevant to WE. In general, model errors were the largest below 150 m above ground level (AGL). Experimental HRRR refinements tended to reduce the mean absolute error (MAE) and other error metrics for many conditions, but degradation in skill (increased MAE) was noted below 150 m AGL at the two lowest-elevation sites at night. Finer resolution was found to produce the most significant reductions in the error metrics.

1.
Ascione
,
A.
,
Cinque
,
A.
,
Miccadei
,
E.
,
Villani
,
F.
, and
Berti
,
C.
, “
The Plio-Quaternary uplift of the Apennine chain: New data from the analysis of topography and river valleys in Central Italy
,”
Geomorphology
102
(
1
),
105
118
(
2008
).
2.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Kelley
,
N. D.
,
Brewer
,
W. A.
, and
Hardesty
,
R. M.
, “
Wind-energy meteorology: Insight into wind properties in the turbine rotor layer of the atmosphere from high-resolution Doppler lidar
,”
Bull. Am. Meteorol. Soc.
94
,
883
902
(
2013
).
3.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Brewer
,
W. A.
,
Lundquist
,
J. K.
,
Kelley
,
N. D.
,
Sandberg
,
S. P.
,
Alvarez
,
R. J.
,
Hardesty
,
R. M.
, and
Weickmann
,
A. M.
, “
3-D volumetric analysis of wind-turbine wake properties in the atmosphere using high-resolution Doppler lidar
,”
J. Atmos. Oceanic Technol.
32
,
904
914
(
2015
).
4.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Brewer
,
W. A.
,
James
,
E. P.
,
Olson
,
J. B.
,
Benjamin
,
S. G.
,
Carley
,
J. R.
,
Bianco
,
L.
,
Djalalova
,
I. V.
,
Wilczak
,
J. M.
,
Marquis
,
M. C.
,
Cline
,
J.
, and
Hardesty
,
R. M.
, “
Evaluating and improving NWP forecasts for the future: How the needs of offshore wind energy can point the way
,”
Bull. Am. Meteorol. Soc.
99
,
1155
1176
(
2018
).
5.
Banta
,
R. M.
,
Pichugina
,
Y. L.
,
Brewer
,
W. A.
,
Choukulkar
,
A.
,
Lantz
,
K. O.
,
Olson
,
J. B.
,
Kenyon
,
J.
,
Fernando
,
H. J. S.
,
Krishnamurthy
,
R.
,
Stoelinga
,
M. J.
,
Sharp
,
J.
,
Darby
,
L. S.
,
Turner
,
D. D.
,
Baidar
,
S.
, and
Sandberg
,
S. P.
, “
Characterizing NWP model errors using Doppler-lidar measurements of recurrent regional diurnal flows: Marine-air intrusions into the Columbia-River Basin
,”
Mon. Weather Rev.
148
,
929
953
(
2020
).
6.
Benjamin
,
S. G.
,
Weygandt
,
S. S.
,
Brown
,
J. M.
,
Hu
,
M.
,
Alexander
,
C.
,
Smirnova
,
T. G.
,
Olson
,
J. B.
,
James
,
E.
,
Dowell
,
D. C.
,
Grell
,
G. A.
 et al, “
A North American hourly assimilation and model forecast cycle: The rapid refresh
,”
Mon. Weather Rev.
144
,
1669
1694
(
2016
).
7.
Bianco
,
L.
,
Djalalova
,
I. V.
,
Wilczak
,
J. M.
,
Olson
,
J. B.
 et al, “
Impact of model improvements on 80 m wind speeds during the second Wind Forecast Improvement Project (WFIP2)
,”
Geosci. Model Dev.
12
,
4803
4821
(
2019
).
8.
Bonin
,
T. A.
,
Choukulkar
,
A.
,
Brewer
,
W. A.
,
Sandberg
,
S. P.
,
Weickmann
,
A. M.
,
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Oncley
,
S. P.
, and
Wolfe
,
D. E.
, “
Evaluation of turbulence measurement techniques from a single Doppler lidar
,”
Atmos. Meas. Tech.
10
,
3021
3039
(
2017
).
9.
Draxl
,
C.
,
Hahmann
,
A. N.
,
Pena
,
A.
, and
Giebel
,
G.
, “
Evaluating winds and vertical shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes
,”
Wind Energy
17
,
39
55
(
2014
).
10.
Draxl
,
C.
,
Berg
,
L. K.
,
Bianco
,
L.
,
Bonin
,
T. A.
,
Choukulkar
,
A.
,
Clifton
,
A.
,
Cline
,
J. W.
,
Djalalova
,
I. V.
,
Ghate
,
V.
,
Grimit
,
E. P.
,
Holub
,
K.
,
Kenyon
,
J. S.
,
Lantz
,
K.
,
Long
,
C.
,
Lundquist
,
J.
,
McCaa
,
J.
,
McCaffrey
,
K.
,
Newman
,
J. F.
,
Olson
,
J. B.
,
Pichugina
,
Y.
,
Sharp
,
J.
,
Shaw
,
W. J.
,
Smith
,
N. H.
, and
Toy
,
M. D.
, “
The verification and validation strategy within the second wind forecast improvement project (WFIP 2)
,” National Renewable Energy Laboratory Report No. NREL/TP-5000-72553 (
2019
). 
11.
Draxl
,
C.
,
Worsnop
,
R.
,
Xia
,
G.
,
Chand
,
D.
,
Lundquist
,
J. K.
,
Pichugina
,
Y.
,
Sharp
,
J.
,
Wedam
,
G.
,
Wilczak
,
J.
, and
Berg
,
L.
, “
Mountain waves impact wind power generation
,”
Wind Energy Sci.
(submitted).
12.
Drechsel
,
S.
,
Mayr
,
G. J.
,
Messner
,
J. W.
, and
Stauffer
,
R.
, “
Lower boundary wind speeds: Measurements and verification of forecasts
,”
J. Appl. Meteorol. Climatol.
51
,
1602
1617
(
2012
).
13.
Dupont
,
E.
,
Koppelaar
,
R.
, and
Jeanmart
,
H.
, “
Global available wind energy with physical and energy return on investment constraints
,”
Appl. Energy
209
,
322
(
2018
).
14.
International Electrotechnical Commission
,
Wind Turbines: Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines
(
IEC 61400-12-1
,
2007
), p.
90
.
15.
Fast
,
J. D.
and
Darby
,
L. S.
, “
An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using Doppler lidar measurements during VTMX 2000
,”
J. Appl. Meteorol.
43
(
3
),
420
436
(
2004
).
16.
Fitch
,
A. C.
,
Olson
,
J. B.
,
Lundquist
,
J. K.
,
Dudhia
,
J.
,
Gupta
,
A. K.
,
Michalakes
,
J.
, and
Barstad
,
I.
, “
Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model
,”
Mon. Weather Rev.
140
,
3017
3038
(
2012
).
17.
Lundquist
,
J. K.
,
DuVivier
,
K. K.
,
Kaffine
,
D.
, et al, “
Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development
,”
Nat. Energy
4
,
26
34
(
2019
).
18.
Krogsæter
,
O.
and
Reuder
,
J.
, “
Validation of boundary layer parameterization schemes in the weather research and forecasting model under the aspect of offshore wind energy applications—Part I: Average wind speed and wind shear
,”
Wind Energy
18
,
769
782
(
2015
).
19.
McCaffrey
,
K.
,
Wilczak
,
J. M.
,
Bianco
,
L.
,
Grimit
,
E.
,
Sharp
,
J.
,
Banta
,
R.
,
Friedrich
,
K.
,
Fernando
,
H. J. S.
,
Krishnamurthy
,
R.
,
Leo
,
L.
, and
Muradyan
,
P.
, “
Identification and characterization of persistent cold pool events from temperature and wind profilers in the Columbia River Basin
,”
J. Appl. Meteorol. Climatol.
58
,
2533
2551
(
2019
).
20.
Olson
,
J. B.
,
Kenyon
,
J. S.
,
Djalalova
,
I.
,
Bianco
,
L.
,
Turner
,
D. D.
,
Pichugina
,
Y.
,
Choukulkar
,
A.
,
Toy
,
M. D.
,
Brown
,
J. M.
,
Angevine
,
W. M.
,
Akish
,
E.
,
Bao
,
J.-W.
,
Jimenez
,
P.
,
Kosovic
,
B.
,
Lundquist
,
K. A.
,
Draxl
,
C.
,
Lundquist
,
J. K.
,
McCaa
,
J.
,
McCaffrey
,
K.
,
Lantz
,
K.
,
Long
,
C.
,
Wilczak
,
J.
,
Banta
,
R.
,
Marquis
,
M.
,
Redfern
,
S.
,
Berg
,
L. K.
,
Shaw
,
W.
, and
Cline
,
J.
, “
Improving wind energy forecasting through numerical weather prediction model development
,”
Bull. Am. Meteorol. Soc.
100
,
2201
2220
(
2019
).
21.
Pichugina
,
Y. L.
,
Banta
,
R. M.
,
Olson
,
J. B.
,
Carley
,
J. R.
,
Marquis
,
M. C.
,
Brewer
,
W. A.
,
Wilczak
,
J. M.
,
Djalalova
,
I. V.
,
Bianco
,
L.
,
James
,
E. P.
,
Benjamin
,
S. G.
, and
Cline
,
J.
, “
Assessment of NWP forecast models in simulating offshore winds through the lower boundary layer by measurements from a ship-based scanning Doppler lidar
,”
Mon. Weather Rev.
145
(
10
),
4277
4301
(
2017
).
22.
Pichugina
,
Y. L.
,
Banta
,
R. M.
 et al, “
Spatial variability of winds and HRRR-NCEP model error statistics at three Doppler-lidar sites in the wind-energy generation region of the Columbia River Basin
,”
J. Appl. Meteorol. Climatol.
58
,
1633
1656
(
2019
).
23.
Rajewski
,
D. A.
,
Takle
,
E. S.
,
Lundquist
,
J. K.
,
Oncley
,
S.
,
Prueger
,
J. H.
,
Horst
,
T. W.
,
Rhodes
,
M. E.
,
Pfeiffer
,
R.
,
Hatfield
,
J. L.
,
Spoth
,
K. K.
, and
Doorenbos
,
R. K.
, “
Crop wind energy experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm
,”
Bull. Am. Meteorol. Soc.
94
,
655
672
(
2013
).
24.
Redfern
,
S.
,
Olson
,
J. B.
,
Lundquist
,
J. K.
, and
Clack
,
C. T. M.
, “
Incorporation of the rotor-equivalent wind speed into the weather research and forecasting model's wind farm parameterization
,”
Mon. Weather Rev.
147
,
1029
1046
(
2019
).
25.
Schroeder
,
P.
,
Alan Brewer
,
W.
,
Choukulkar
,
A.
,
Weickmann
,
A.
,
Zucker
,
M.
,
Holloway
,
M.
, and
Sandberg
,
S.
, “
A compact, flexible, and robust micro pulsed Doppler lidar
,”
J. Atmos. Oceanic Technol.
(unpublished).
26.
Sharp
,
J.
and
Mass
,
C.
, “
Columbia Gorge gap flow: Insights from observational analysis and ultra-high-resolution simulation
,”
Bull. Am. Meteorol. Soc.
83
(
12
),
1757
1762
(
2002
).
27.
Sharp
,
J.
and
Mass
,
C. F.
, “
Columbia Gorge gap winds: Their climatological influence and synoptic evolution
,”
Weather Forecasting
19
,
970
992
(
2004
).
28.
Shaw
,
W. J.
,
Berg
,
L. K.
,
Cline
,
J.
,
Draxl
,
C.
,
Grimit
,
E.
,
Lundquist
,
J. K.
,
Marquis
,
M.
,
McCaa
,
J.
,
Olson
,
J.
,
Sivaraman
,
C.
,
Sharp
,
J.
, and
Wilczak
,
J.
, “
The second wind forecast improvement project (WFIP 2): General overview
,”
Bull. Am. Meteorol. Soc.
100
,
1687
1699
(
2019
).
29.
Sidersleben
,
S. K.
,
Lundquist
,
J. K.
,
Platis
,
A.
,
Lampert
,
A.
,
Bärfuss
,
K.
,
Cañadillas
,
B.
,
Djath
,
B.
,
Schulz-Stellenfleth
,
J.
,
Neumann
,
T.
,
Bange
,
J.
, and
Emeis
,
S.
, “
Micrometeorological impacts of offshore wind farms as seen in observations and simulations
,”
Environ. Res. Lett.
13
,
124012
(
2018
).
30.
Siedersleben
,
S. K.
,
Platis
,
A.
,
Lundquist
,
J. K.
,
Djath
,
B.
,
Lampert
,
A.
,
Bärfuss
,
K.
,
Cañadillas
,
B.
,
Schulz-Stellenfleth
,
J.
,
Bange
,
J.
,
Neumann
,
T.
, and
Emeis
,
S.
, “
Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1)
,”
Geosci. Model Dev.
13
,
249
268
(
2020
).
31.
Skamarock
,
W. C.
 et al, “
A description of the advanced research WRF version 3
,” NCAR Technical Note NCAR/TN-475+STR (
2008
), p.
113
.
32.
Whiteman
,
C. D.
,
Zhong
,
S.
,
Shaw
,
W. J.
,
Hubbe
,
J. M.
,
Bian
,
X.
, and
Mittelstadt
,
J.
, “
Cold pools in the Columbia basin
,”
Weather Forecasting
16
,
432
447
(
2001
).
33.
Wilczak
,
J. M.
,
Stoelinga
,
M.
,
Berg
,
L. K.
,
Sharp
,
J.
,
Draxl
,
C.
,
McCaffrey
,
K.
,
Banta
,
R. M.
,
Bianco
,
L.
,
Djalalova
,
I.
,
Lundquist
,
J. K.
,
Muradyan
,
P.
,
Choukulkar
,
A.
,
Leo
,
L.
,
Bonin
,
T.
,
Pichugina
,
Y.
,
Eckman
,
R.
,
Long
,
C. N.
,
Lantz
,
K.
,
Worsnop
,
R. P.
,
Bickford
,
J.
,
Bodini
,
N.
,
Chand
,
D.
,
Clifton
,
A.
,
Cline
,
J.
,
Cook
,
D. R.
,
Fernando
,
H. J. S.
,
Friedrich
,
K.
,
Krishnamurthy
,
R.
,
Marquis
,
M.
,
McCaa
,
J.
,
Olson
,
J. B.
,
Otarola-Bustos
,
S.
,
Scott
,
G.
,
Shaw
,
W. J.
,
Wharton
,
S.
, and
White
,
A. B.
, “
The second wind forecast improvement project (WFIP2): Observational field campaign
,”
Bull. Am. Meteorol. Soc.
100
,
1701
1723
(
2019
).
34.
Yang
,
B.
,
Qian
,
Y.
,
Berg
,
L. K.
,
Ma
,
P. L.
,
Wharton
,
S.
,
Bulaevskaya
,
V.
,
Yan
,
H.
,
Hou
,
Z.
, and
Shaw
,
W. J.
, “
Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model
,”
Boundary-Layer Meteorol.
162
,
117
142
(
2017
).
35.
Zhong
,
S.
and
Fast
,
J. D.
, “
An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using field campaign data in the Salt Lake Valley
,”
Mon. Weather Rev.
131
,
1301
1322
(
2003
).
36.
Zhong
,
S.
,
Whiteman
,
C. D.
,
Bian
,
X.
,
Shaw
,
W. J.
, and
Hubbe
,
J. M.
, “
Meteorological processes affecting the evolution of a wintertime cold-air pool in the Columbia Basin
,”
Mon. Weather Rev.
129
,
2600
2613
(
2001
).
You do not currently have access to this content.