Eco-green biodiesel is an alternative fuel produced by a sustainable methodology and using renewable sources as feedstock due to its green nature and lower emission of pollutants in comparison with conventional fuels. In this work, biodiesels were produced using an innovative source of catalysts, a mixture of metal hydroxides: lithium-sodium (LiOH + NaOH) or lithium-potassium (LiOH + KOH) due to the considerable increase in the consumption and disposal of Li-ion battery wastes (electronic residues) in recent years. Waste cooking oil samples from fast food chains and households were used as an oily raw feedstock without any prior treatment to produce eco-green biodiesel by a transesterification reaction at room temperature. The recycling process not only removes Li-ion battery wastes and oily contaminants from the environment but also enables the generation of a green power source. The presence of lithium as a catalyst for producing eco-green biodiesel was investigated in order to verify previously the possibility of using lithium recovered from waste Li-ion batteries present in electronic devices in general. As a result, nicely followed by hydrogen nuclear magnetic resonance, the biodiesel mean yield of 90% using 5 wt. % LiOH with 95 wt. % NaOH or KOH catalysts was obtained and considered to be relatively high considering the high resolution of this technique. Gas chromatography, thin-layer chromatography, hydrogen nuclear magnetic resonance, infrared spectroscopy, density, and viscosity were the techniques performed to analyze the chemical structure and physical properties of the biodiesel (methyl esters) produced samples in the presence of a lithium catalyst.

1.
Agarwal
,
A. K.
, “
Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines
,”
Prog. Energy Combust. Sci.
33
,
233
271
(
2007
).
2.
Allawzi
,
M.
and
Kandah
,
M. I.
, “
Parametric study of biodiesel production from used soybean oil
,”
Eur. J. Lipid Sci. Technol.
110
(
8
),
760
766
(
2008
).
3.
Alonso-Gómez
,
L. A.
,
Solarte-Toro
,
J. C.
,
Bello-Pérez
,
L. A.
, and
Cardona-Alzate
,
C. A.
, “
Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material
,”
Food Bioprod. Process.
121
,
29
42
(
2020
).
4.
Alptekin
,
E.
and
Canakci
,
M.
, “
Determination of the density and the viscosities of biodiesel-diesel fuel blends
,”
Renewable Energy
33
,
2623
2630
(
2008
).
5.
American Society for Testing and Materials
,
Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels
(
ASTM International
,
West Conshohocken, PA
,
2020
).
6.
Balat
,
M.
and
Balat
,
H.
, “
Progress in biodiesel processing
,”
Appl. Energy
87
,
1815
1835
(
2010
).
7.
Borah
,
M. J.
,
Devi
,
A.
,
Borah
,
R.
, and
Deka
,
D.
, “
Synthesis and application of Co doped ZnO as heterogeneous nanocatalyst for biodiesel production from non-edible oil
,”
Renewable Energy
133
,
512
519
(
2019
).
8.
Borges
,
M. E.
,
Díaz
,
L.
,
Alvarez-Galván
,
M. C.
, and
Brito
,
A.
, “
High performance heterogeneous catalyst for biodiesel production from vegetal and waste oil at low temperature
,”
Appl. Catal., B
102
(
1
),
310
315
(
2011
).
9.
Chattopadhyay
,
S.
,
Das
,
S.
, and
Sen
,
R.
, “
Rapid and precise estimation of biodiesel by high performance thin layer chromatography
,”
Appl. Energy
88
(
12
),
5188
5192
(
2011
).
10.
Chhetri
,
A. B.
,
Watts
,
K. C.
, and
Islam
,
M. R.
, “
Waste cooking oil as an alternative feedstock for biodiesel production
,”
Energies
1
,
3
18
(
2008
).
11.
Dhiman
,
S.
and
Gupta
,
B.
, “
Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation
,”
J. Cleaner Prod.
225
,
820
832
(
2019
).
12.
Diya'uddeen
,
B. H.
,
Aziz
,
A. R. A.
,
Daud
,
W.
, and
Chakrabarti
,
M. H.
, “
Performance evaluation of biodiesel from used domestic waste oils: A review
,”
Process Safety Environ. Prot.
90
,
164
179
(
2012
).
13.
Enweremadu
,
C. C.
and
Mbarawa
,
M. M.
, “
Technical aspects of production and analysis of biodiesel from used cooking oil—A review
,”
Renewable Sustainable Energy Rev.
13
,
2205
2224
(
2009
).
14.
Félix
,
S.
,
Araújo
,
J.
,
Pires
,
A. M.
, and
Sousa
,
A. C.
, “
Soap production: A green prospective
,”
Waste Manage.
66
,
190
195
(
2017
).
15.
Fonseca
,
J. M.
,
Teleken
,
J. G.
,
Almeida
,
V. C.
, and
Silva
,
C.
, “
Biodiesel from waste cooking oils: Methods of production and purification
,”
Energy Convers. Manage.
184
,
205
218
(
2019
).
16.
Gardner
,
R.
,
Kazi
,
S.
, and
Ellis
,
E. M.
, “
Detoxication of the environmental pollutant acrolein by a rat liver aldo-keto reductase
,”
Toxicol. Lett.
148
,
65
72
(
2004
).
17.
Gebremariam
,
S. N.
and
Marchetti
,
J. M.
, “
Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts
,”
Energy Convers. Manage.
171
,
1712
1720
(
2018
).
18.
Geris
,
R.
,
Santos
,
N. A. C.
,
Amaral
,
B. A.
,
Maia
,
I. S.
,
Castro
,
V. D.
, and
Carvalho
,
J. R. M.
, “
Biodiesel from soybean – Transesterification reaction for organic chemistry experimental classes
,”
Química Nova
30
(
5
),
1369
1373
(
2007
).
19.
Gonçalves
,
M.
,
Castro
,
C. S.
,
Boas
,
I. K. V.
,
Soler
,
F. C.
,
Pinto
,
E. C.
,
Lavall
,
R. L.
, and
Carvalho
,
W. A.
, “
Glycerin waste as sustainable precursor for activated carbon production: Adsorption properties and application in supracapacitors
,”
J. Environ. Chem. Eng.
7
,
103059
(
2019
).
20.
Issariyakul
,
T.
and
Dalai
,
A. K.
, “
Biodiesel from vegetable oils
,”
Renewable Sustainable Energy Rev.
31
,
446
471
(
2014
).
21.
Lebedeva
,
N. P.
and
Boon-Brett
,
L.
, “
Considerations on the chemical toxicity of contemporary Li-ion battery electrolytes and their components
,”
J. Electrochem. Soc.
163
,
A821
A830
(
2016
).
22.
Leduc
,
S.
,
Natarajan
,
K.
,
Dotzauer
,
E.
,
McCallum
,
I.
, and
Obersteiner
,
M.
, “
Optimizing biodiesel production in India
,”
Appl. Energy
86
,
S125
S131
(
2009
).
23.
Lian
,
S.
,
Li
,
H.
,
Tang
,
J.
,
Tong
,
D.
, and
Hu
,
C.
, “
Integration of extraction and transesterification of lipid from jatropha seeds for the production of biodiesel
,”
Appl. Energy
98
,
540
547
(
2012
).
24.
Mohadesi
,
M.
,
Aghel
,
B.
,
Maleki
,
M.
, and
Ansari
,
A.
, “
Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor
,”
Renewable Energy
136
,
677
682
(
2019
).
25.
Milano
,
J.
,
Ong
,
H. C.
,
Masjuki
,
H. H.
,
Silitonga
,
A. S.
, and
Sebayang
,
A. H.
, “
Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology
,”
Energy Convers. Manage.
158
,
400
415
(
2018
).
26.
Monteiro
,
M. R.
,
Kugelmeier
,
C. L.
,
Pinheiro
,
R. S.
,
Batalha
,
M. O.
, and
César
,
A. S.
, “
Glycerol from biodiesel production: Technological paths for sustainability
,”
Renewable Sustainable Energy Rev.
88
,
109
122
(
2018
).
27.
Padula
,
A. D.
,
Santos
,
M. S.
,
Ferreira
,
L.
, and
Borenstein
,
D.
, “
The emergence of the biodiesel industry in Brazil: Current figures and future prospects
,”
Energy Policy
44
,
395
405
(
2012
).
28.
Qiu
,
F.
,
Li
,
Y.
,
Yang
,
D.
,
Li
,
X.
, and
Sun
,
P.
, “
Biodiesel production from mixed soybean oil and rapeseed oil
,”
Appl. Energy
88
,
2050
2055
(
2011
).
29.
Oliveira
,
F. C.
and
Coelho
,
S. T.
, “
Contents lists available at history, evolution, and environmental impact of biodiesel in Brazil: A review
,”
Renewable Sustainable Energy Rev.
75
,
168
179
(
2017
).
30.
Phan
,
A. N.
and
Phan
,
T. M.
Biodiesel production from waste cooking oils
,”
Fuel
87
,
3490
3496
(
2008
).
31.
Quessada
,
T. P.
,
Guedes
,
C. L. B.
,
Borsato
,
D.
, et al., “
Obtaining biodiesel from soybean oil and corn using basic catalysts and acid catalyst
,”
Biosphere Encycl., Sci. Cent. Knowing
6
,
1
25
(
2010
).
32.
Saifuddin
,
N. M.
,
Shamsuddin
,
A. H.
, and
Palanisamy
,
K.
, “
A review on processing technology for biodiesel production
,”
Trends Appl. Sci. Res.
10
(
1
),
1
37
(
2015
).
33.
Sander
,
A.
,
Koscak
,
M. A.
,
Kosir
,
D.
, et al., “
The influence of animal fat type and purification conditions on biodiesel quality
,”
Renewable Energy
118
,
752
760
(
2018
).
34.
Sbihi
,
H. M.
,
Nehdi
,
I. A.
,
Tan
,
C. P.
, et al., “
Characteristics and fatty acid composition of milk fat from Saudi Aradi goat
,”
Grasas Aceites
66
,
e101
(
2015
).
35.
Sheinbaum
,
C.
,
Balam
,
M. V.
,
Robles
,
G.
, et al., “
Biodiesel from waste cooking oil in Mexico City
,”
Waste Manage. Res.
33
,
730
739
(
2015
).
36.
Singh
,
S. P.
and
Singh
,
D.
, “
Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review
,”
Renewable Sustainable Energy Rev.
14
,
200
216
(
2010
).
37.
Sinha
,
S.
,
Agarwal
,
A. K.
, and
Garg
,
S.
, “
Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization
,”
Energy Convers. Manage.
49
,
1248
1257
(
2008
).
38.
Soegiantoro
,
G. H.
,
Chang
,
J.
,
Rahmawati
,
P.
,
Christiani
,
M. F.
, and
Mufrodi
,
Z.
, “
Home-made eco biodiesel from chicken fat (CIAT) and waste cooking oil (PAIL)
,”
Energy Procedia
158
,
1105
1109
(
2019
).
39.
Swain
,
B.
, “
Recovery and recycling of lithium: A review
,”
Separ. Purif. Technol.
172
,
388
403
(
2017
).
40.
Talebian-Kiakalaieh
,
A.
,
Amin
,
N. A. S.
, and
Mazaheri
,
H.
, “
A review on novel process of biodiesel production from waste cooking oil
,”
Appl. Energy
104
,
683
710
(
2013
).
41.
Tariq
,
M.
,
Ali
,
S.
,
Ahmad
,
F.
,
Ahmad
,
M.
,
Zafar
,
M.
,
Khalid
,
N.
, and
Khan
,
M. A.
, “
Identification, FT-IR, NMR (1H and 13C), and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil
,”
Fuel Process. Technol.
92
,
336
341
(
2011
).
42.
Vigneshwar
,
V.
,
Krishnan
,
S. Y.
,
Kishna
,
R. S.
,
Srinath
,
R.
, and
Nanthagopal
,
K.
, “
Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine
,”
Energy Convers. Manage.
81
,
30
40
(
2014
).
43.
Vinu
,
V.
and
Binitha
,
N. N.
, “
Lithium silicate-based catalysts prepared using arecanut husk ash for biodiesel production from used cooking oil
,”
Mater. Today
25
,
241
245
(
2020
).
44.
Vollhardt
,
K. P. C.
and
Schore
,
N. E.
,
Organic Chemistry: Structure and Function
(
Bookman
,
2004
).
45.
Wen
,
Z.
,
Yu
,
X.
,
Tu
,
S. T.
, et al., “
Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts
,”
Appl. Energy
87
,
743
748
(
2010
).
46.
Wu
,
X.
and
Leung
,
D. Y. C.
, “
Optimization of biodiesel production from camelina oil using orthogonal experiment
,”
Appl. Energy
88
,
3615
3624
(
2011
).
47.
Yeboah
,
E. M. O.
,
Kobule-Lekalake
,
R. I.
,
Jackson
,
J. C.
,
Muriithi
,
E. N.
,
Matenanga
,
O.
, and
Yeboah
,
S. O.
, “
Application of high-resolution NMR, FTIR, and GC–MS to a comparative study of some indigenous seed oils from Botswana
,”
Innovative Food Sci. Emerging Technol.
44
,
181
190
(
2017
).
48.
Yelda
,
H. B.
, “
Green Biodiesel synthesis using waste shells as sustainable catalysts with Camelina sativa oil
,”
J. Chem.
2016
,
1
10
.
You do not currently have access to this content.