A critical step in stochastic optimization models of power system analysis is to select a set of appropriate scenarios and significant numbers of scenario generation methods exist in the literature. This paper develops a clustering based scenario generation method, which aims to improve the performance of existing scenario generation techniques by grouping a set of correlated wind sites into clusters according to their cross-correlations. Copula based models are utilized to model spatiotemporal correlations and the Gibbs sampling is then used to generate scenarios for day-ahead markets. Our results show that the generated scenarios based on clustered wind sites outperform existing approaches in terms of reliability and sharpness and can reduce the total computational time for scenario generation and reduction significantly. The clustering-based framework can therefore provide a better support for real-world market simulations with high wind penetration.

1.
S.
Takriti
,
J. R.
Birge
, and
E.
Long
, “
A stochastic model for the unit commitment problem
,”
IEEE Trans. Power Syst.
11
,
1497
1508
(
1996
).
2.
J. R.
Birge
and
F.
Louveaux
,
Introduction to Stochastic Programming
(
Springer Science & Business Media
,
2011
).
3.
E. M.
Constantinescu
,
V. M.
Zavala
,
M.
Rocklin
,
S.
Lee
, and
M.
Anitescu
, “
A computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation
,”
IEEE Trans. Power Syst.
26
,
431
441
(
2011
).
4.
Q. P.
Zheng
,
J.
Wang
, and
A. L.
Liu
, “
Stochastic optimization for unit commitment—A review
,”
IEEE Trans. Power Syst.
30
,
1913
1924
(
2015
).
5.
J.
Wang
,
A.
Botterud
,
R.
Bessa
,
H.
Keko
,
L.
Carvalho
,
D.
Issicaba
,
J.
Sumaili
, and
V.
Miranda
, “
Wind power forecasting uncertainty and unit commitment
,”
Appl. Energy
88
,
4014
4023
(
2011
).
6.
J.
Wang
,
M.
Shahidehpour
, and
Z.
Li
, “
Security-constrained unit commitment with volatile wind power generation
,”
IEEE Trans. Power Syst.
23
,
1319
1327
(
2008
).
7.
F.
Bouffard
,
F. D.
Galiana
, and
A. J.
Conejo
, “
Market-clearing with stochastic security-part I: Formulation
,”
IEEE Trans. Power Syst.
20
,
1818
1826
(
2005
).
8.
F.
Bouffard
,
F. D.
Galiana
, and
A. J.
Conejo
, “
Market-clearing with stochastic security-part II: Case studies
,”
IEEE Trans. Power Syst.
20
,
1827
1835
(
2005
).
9.
B.
Wang
and
B. F.
Hobbs
, “
Real-time markets for flexiramp: A stochastic unit commitment-based analysis
,”
IEEE Trans. Power Syst.
31
,
846
860
(
2016
).
10.
A.
Papavasiliou
,
S. S.
Oren
, and
R. P.
O'Neill
, “
Reserve requirements for wind power integration: A scenario-based stochastic programming framework
,”
IEEE Trans. Power Syst.
26
,
2197
2206
(
2011
).
11.
P.
Pinson
, “
Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions
,”
J. R. Stat. Soc.
61
,
555
576
(
2012
).
12.
P.
Pinson
,
H.
Madsen
,
H. A.
Nielsen
,
G.
Papaefthymiou
, and
B.
Klöckl
, “
From probabilistic forecasts to statistical scenarios of short-term wind power production
,”
Wind Energy
12
,
51
62
(
2009
).
13.
M.
Cui
,
J.
Zhang
,
Q.
Wang
,
V.
Krishnan
, and
B.-M.
Hodge
, “
A data-driven methodology for probabilistic wind power ramp forecasting
,”
IEEE Trans. Smart Grid
10
,
1326
1338
(
2017
).
14.
H.
Bludszuweit
,
J. A.
Domínguez-Navarro
, and
A.
Llombart
, “
Statistical analysis of wind power forecast error
,”
IEEE Trans. Power Syst.
23
,
983
991
(
2008
).
15.
K.
Bruninx
and
E.
Delarue
, “
A statistical description of the error on wind power forecasts for probabilistic reserve sizing
,”
IEEE Trans. Sustainable Energy
5
,
995
1002
(
2014
).
16.
M. J.
Morshed
,
J. B.
Hmida
, and
A.
Fekih
, “
A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems
,”
Appl. Energy
211
,
1136
1149
(
2018
).
17.
E.
Xydas
,
M.
Qadrdan
,
C.
Marmaras
,
L.
Cipcigan
,
N.
Jenkins
, and
H.
Ameli
, “
Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators
,”
Appl. Energy
192
,
382
394
(
2017
).
18.
X.-Y.
Ma
,
Y.-Z.
Sun
, and
H.-L.
Fang
, “
Scenario generation of wind power based on statistical uncertainty and variability
,”
IEEE Trans. Sustainable Energy
4
,
894
904
(
2013
).
19.
N.
Zhang
,
C.
Kang
,
Q.
Xu
,
C.
Jiang
,
Z.
Chen
, and
J.
Liu
, “
Modelling and simulating the spatio-temporal correlations of clustered wind power using copula
,”
J. Electr. Eng. Technol.
8
,
1615
1625
(
2013
).
20.
C.
Tang
,
Y.
Wang
,
J.
Xu
,
Y.
Sun
, and
B.
Zhang
, “
Efficient scenario generation of multiple renewable power plants considering spatial and temporal correlations
,”
Appl. Energy
221
,
348
357
(
2018
).
21.
Z.
Wang
,
C.
Shen
, and
F.
Liu
, “
A conditional model of wind power forecast errors and its application in scenario generation
,”
Appl. Energy
212
,
771
785
(
2018
).
22.
F.
Hafiz
,
A. R.
de Queiroz
, and
I.
Husain
, “
Coordinated control of PEV and PV-based storage system under generation and load uncertainties
,” in
2018 IEEE Industry Applications Society Annual Meeting (IAS)
(
2018
), pp.
1
5
.
23.
K.
Høyland
,
M.
Kaut
, and
S. W.
Wallace
, “
A heuristic for moment-matching scenario generation
,”
Comput. Optim. Appl.
24
,
169
185
(
2003
).
24.
D.
Lee
and
R.
Baldick
, “
Load and wind power scenario generation through the generalized dynamic factor model
,”
IEEE Trans. Power Syst.
32
,
400
410
(
2017
).
25.
S. I.
Vagropoulos
,
E. G.
Kardakos
,
C. K.
Simoglou
,
A. G.
Bakirtzis
, and
J. P.
Catalão
, “
ANN-based scenario generation methodology for stochastic variables of electric power systems
,”
Electr. Power Syst. Res.
134
,
9
18
(
2016
).
26.
Y.
Xu
,
L.
Shi
, and
Y.
Ni
, “
Deep-learning-based scenario generation strategy considering correlation between multiple wind farms
,”
J. Eng.
2017
,
2207
2210
.
27.
H.
Wei
,
Z.
Hongxuan
,
D.
Yu
,
W.
Yiting
,
D.
Ling
, and
X.
Ming
, “
Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks
,”
Appl. Energy
250
,
389
403
(
2019
).
28.
Y.
Chen
,
Y.
Wang
,
D.
Kirschen
, and
B.
Zhang
, “
Model-free renewable scenario generation using generative adversarial networks
,”
IEEE Trans. Power Syst.
33
,
3265
3275
(
2018
).
29.
G.
Sideratos
and
N. D.
Hatziargyriou
, “
Probabilistic wind power forecasting using radial basis function neural networks
,”
IEEE Trans. Power Syst.
27
,
1788
1796
(
2012
).
30.
J.-F.
Toubeau
,
J.
Bottieau
,
F.
Vallée
, and
Z.
De Grève
, “
Deep learning-based multivariate probabilistic forecasting for short-term scheduling in power markets
,”
IEEE Trans. Power Syst.
34
,
1203
1215
(
2019
).
31.
G.
Papaefthymiou
and
D.
Kurowicka
, “
Using copulas for modeling stochastic dependence in power system uncertainty analysis
,”
IEEE Trans. Power Syst.
24
,
40
49
(
2009
).
32.
J. E. B.
Iversen
and
P.
Pinson
, “
Resgen: Renewable energy scenario generation platform
,” in
2016 IEEE Power Engineering Society General Meeting
(
IEEE
,
2016
).
33.
F.
Golestaneh
,
H. B.
Gooi
, and
P.
Pinson
, “
Generation and evaluation of space—time trajectories of photovoltaic power
,”
Appl. Energy
176
,
80
91
(
2016
).
34.
W.
Hu
,
Y.
Min
,
Y.
Zhou
, and
Q.
Lu
, “
Wind power forecasting errors modelling approach considering temporal and spatial dependence
,”
J. Mod. Power Syst. Clean Energy
5
,
489
498
(
2017
).
35.
D. L.
Woodruff
,
J.
Deride
,
A.
Staid
,
J.-P.
Watson
,
G.
Slevogt
, and
C.
Silva-Monroy
, “
Constructing probabilistic scenarios for wide-area solar power generation
,”
Sol. Energy
160
,
153
167
(
2018
).
36.
M.
Kazerooni
,
H.
Zhu
, and
T. J.
Overbye
, “
Literature review on the applications of data mining in power systems
,” in
Power and Energy Conference at Illinois (PECI), 2014
(
IEEE
,
2014
), pp.
1
8
.
37.
F.
Vallée
,
G.
Brunieau
,
M.
Pirlot
,
O.
Deblecker
, and
J.
Lobry
, “
Optimal wind clustering methodology for adequacy evaluation in system generation studies using nonsequential Monte Carlo simulation
,”
IEEE Trans. Power Syst.
26
,
2173
2184
(
2011
).
38.
L.
Dong
,
L.
Wang
,
S. F.
Khahro
,
S.
Gao
, and
X.
Liao
, “
Wind power day-ahead prediction with cluster analysis of NWP
,”
Renewable Sustainable Energy Rev.
60
,
1206
1212
(
2016
).
39.
A. B.
Birchfield
,
T.
Xu
,
K. M.
Gegner
,
K. S.
Shetye
, and
T. J.
Overbye
, “
Grid structural characteristics as validation criteria for synthetic networks
,”
IEEE Trans. Power Syst.
32
,
3258
3265
(
2017
).
40.
B.
Drake
and
K.
Hubacek
, “
What to expect from a greater geographic dispersion of wind farms?—A risk portfolio approach
,”
Energy Policy
35
,
3999
4008
(
2007
).
41.
F.
Roques
,
C.
Hiroux
, and
M.
Saguan
, “
Optimal wind power deployment in Europe—A portfolio approach
,”
Energy Policy
38
,
3245
3256
(
2010
).
42.
Y.
Ma
,
T.
Runolfsson
, and
J.
Jiang
, “
Cluster analysis of wind turbines of large wind farm with diffusion distance method
,”
IET Renewable Power Gener.
5
,
109
116
(
2011
).
43.
P.
Tan
,
M.
Steinbach
, and
V.
Kumar
,
Introduction to Data Mining
, Pearson New International Edition (
Pearson Education Limited
,
2013
).
44.
C.
Robert
and
G.
Casella
,
Monte Carlo Statistical Methods
(
Springer Science & Business Media
,
2013
).
45.
G.
Casella
and
E. I.
George
, “
Explaining the Gibbs sampler
,”
Am. Stat.
46
,
167
174
(
1992
).
46.
Y.
Dvorkin
,
Y.
Wang
,
H.
Pandzic
, and
D.
Kirschen
, “
Comparison of scenario reduction techniques for the stochastic unit commitment
,” in
2014 IEEE PES General Meeting
(
2014
), pp.
1
5
.
47.
J. M.
Morales
,
S.
Pineda
,
A. J.
Conejo
, and
M.
Carrion
, “
Scenario reduction for futures market trading in electricity markets
,”
IEEE Trans. Power Syst.
24
,
878
888
(
2009
).
48.
D.
Xu
,
Z.
Chen
, and
L.
Yang
, “
Scenario tree generation approaches using K-means and LP moment matching methods
,”
J. Comput. Appl. Math.
236
,
4561
4579
(
2012
).
49.
J.
Dupačová
,
N.
Gröwe-Kuska
, and
W.
Römisch
, “
Scenario reduction in stochastic programming
,”
Math. Program.
95
,
493
511
(
2003
).
50.
C.
Wan
,
Z.
Xu
,
P.
Pinson
,
Z. Y.
Dong
, and
K. P.
Wong
, “
Probabilistic forecasting of wind power generation using extreme learning machine
,”
IEEE Trans. Power Syst.
29
,
1033
1044
(
2014
).
51.
P.
Lauret
,
M.
David
, and
P.
Pinson
, “
Verification of solar irradiance probabilistic forecasts
,”
Sol. Energy
194
,
254
271
(
2019
).
52.
H.
Quan
,
A.
Khosravi
,
D.
Yang
, and
D.
Srinivasan
, “
A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids
,”
IEEE Trans. Neural Networks Learn. Syst.
(in press).
53.
T.
Gneiting
and
A. E.
Raftery
, “
Strictly proper scoring rules, prediction, and estimation
,”
J. Am. Stat. Assoc.
102
,
359
378
(
2007
).
54.
H.
Hersbach
, “
Decomposition of the continuous ranked probability score for ensemble prediction systems
,”
Weather Forecasting
15
,
559
570
(
2000
).
55.
M.
Carrión
and
J. M.
Arroyo
, “
A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem
,”
IEEE Trans. Power Syst.
21
,
1371
1378
(
2006
).
56.
N.
Kumar
,
P.
Besuner
,
S.
Lefton
,
D.
Agan
, and
D.
Hilleman
, “
Power plant cycling costs
,”
Technical Report No. NREL/SR-5500-55433
(National Renewable Energy Laboratory (NREL), Golden, CO, USA,
2012
).
57.
EIA
,
Monthly Energy Review
(
U.S. EIA
,
2018
).
58.
R.
Surendran
,
W.
Hogan
,
H.
Hui
, and
C.-N.
Yu
,
Scarcity Pricing in ERCOT
(FERC Technical Conference,
2016
).
59.
Public Utility Commission of Texas,
Chapter 25: Rules
,”
Electric Substantive Rules
(Public Utility Commission of Texas,
2018
).
60.
ERCOT
,
ERCOT Nodal Protocols
(
ERCOT
,
2019
).
61.
U.S. Energy Information Administration
,
State Electricity Profiles 2019
(
U.S. Energy Information Administration
,
2019
).
62.
C.
Draxl
,
A.
Clifton
,
B.-M.
Hodge
, and
J.
McCaa
, “
The wind integration national dataset (wind) toolkit
,”
Appl. Energy
151
,
355
366
(
2015
).
63.
J.-P.
Watson
,
D. L.
Woodruff
, and
W. E.
Hart
, “
PySP: Modeling and solving stochastic programs in Python
,”
Math. Program. Comput.
4
,
109
149
(
2012
).
64.
C.
Tseng
, “
On power system generation unit commitment problems
,” Ph.D. thesis, University of California, Berkeley (
1998
).
65.
J. F.
Benders
, “
Partitioning procedures for solving mixed-variables programming problems
,”
Comput. Manage. Sci.
2
,
3
19
(
2005
).
66.
J. R.
Birge
, “
Decomposition and partitioning methods for multistage stochastic linear programs
,”
Oper. Res.
33
,
989
1007
(
1985
).
67.
B.
Rachunok
,
A.
Staid
,
J.-P.
Watson
,
D. L.
Woodruff
, and
D.
Yang
, “
Stochastic unit commitment performance considering Monte Carlo wind power scenarios
,” in
2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)
(
IEEE
,
2018
), pp.
1
6
.
68.
K.
Kazor
and
A. S.
Hering
, “
Assessing the performance of model-based clustering methods in multivariate time series with application to identifying regional wind regimes
,”
J. Agric., Biol., Environ. Stat.
20
,
192
217
(
2015
).
69.
E.
Keogh
and
C. A.
Ratanamahatana
, “
Exact indexing of dynamic time warping
,”
Knowl. Inf. Syst.
7
,
358
386
(
2005
).
70.
Y.
Fu
,
Human Activity Recognition and Prediction
(
Springer
,
2016
).
71.
A.
Sklar
, “
Random variables, joint distribution functions, and copulas
,”
Kybernetika
9
,
449
460
(
1973
).
You do not currently have access to this content.