Solar energy is the most promising source of renewable energy. However, the solar energy harvesting process has relatively low efficiency, while the practical use of solar energy is challenging. Direct absorption solar collectors (DASC) have been proved to be effective for a variety of applications. In this article, a numerical study of a nanofluid direct absorption solar collector was performed using computational fluid dynamics (CFD). A rectangular DASC with incident light on the top surface was simulated using an Eulerian–Eulerian two-phase model. The model was validated against experiments. A number of parameters such as collector height, particle concentration, and bottom surface properties were optimized. Considering particle concentration, we observed that the optimum volume fraction of particles for enhancing efficiency was obtained for 0.3 wt. %, and a decrease in efficiency was observed for 0.5 wt. %. Design recommendations based on the numerical analysis were provided. The optimum configuration of the considered collector reaches the best efficiency of 68% for 300 μm thickness of the receiver and the highest total efficiency is 87% at a velocity of 3 cm/s. The thermal destabilization of the nanofluid was studied. It was found that over 10% of the nanoparticles are captured in the collector.

1.
R.
Saidur
,
K.
Leong
, and
H.
Mohammed
, “
A review on applications and challenges of nanofluids
,”
Renewable Sustainable Energy Rev.
15
,
1646
1668
(
2011
).
2.
D. A.
Hagos
,
A.
Gebremedhin
, and
B.
Zethraeus
, “
Solar water heating as a potential source for inland Norway energy mix
,”
J. Renewable Energy
2014
,
968320
.
3.
T. P.
Otanicar
,
P. E.
Phelan
,
R. S.
Phrasher
,
G.
Rosengarten
, and
R. A.
Taylor
, “
Nanofluid-based direct absorption solar collector
,”
J. Renewable Sustainable Energy
2
,
033102
(
2010
).
4.
M.
Mirzaei
,
S. M. S.
Hosseini
, and
A. M. M.
Kashkooli
, “
Assessment of al2o3 nanoparticles for the optimal operation of the flat plate solar collector
,”
Appl. Therm. Eng.
134
,
68
77
(
2018
).
5.
O.
Neumann
,
A. S.
Urban
,
J.
Day
,
S.
Lal
,
P.
Nordlander
, and
N. J.
Halas
, “
Solar vapor generation enabled by nanoparticles
,”
ACS Nano
7
,
42
49
(
2013
).
6.
G.
Ni
,
N.
Miljkovic
,
H.
Ghasemi
,
X.
Huang
,
S. V.
Borinska
,
C.-T.
Lin
,
J.
Wang
,
Y.
Xu
,
M. M.
Rahman
,
T. J.
Zhang
, and
G.
Chen
, “
Volumetric solar heating of nanofluids for direct vapor generation
,”
Nano Energy
17
,
290
301
(
2015
).
7.
H.
Ghasemi
,
G.
Ni
,
A. M.
Marconnet
,
J.
Loomis
,
S.
Yerci
,
N.
Milijkovic
, and
G.
Chen
, “
Solar steam generation by heat localization
,”
Nat. Commun.
5
,
4449
(
2014
).
8.
Z.-Q.
Yin
,
X.-F.
Li
,
F.-B.
Bao
,
C.-X.
Tu
, and
X. Y.
Gao
, “
Thermophoresis and Brownian motion effects on nanoparticle deposition inside a 90 degree square bend tube
,”
Aerosol Air Qual. Res.
18
,
1746
1755
(
2018
).
9.
Z.
Haddad
,
E.
Abu-Nada
,
H. F.
Oztop
, and
A.
Mataoui
, “
Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement?
,”
Int. J. Therm. Sci.
57
,
152
162
(
2012
).
10.
J.
Burelbach
,
M.
Zupkauskas
,
R.
Lamboll
,
Y.
Lan
, and
E.
Eiser
, “
Colloidal motion under the action of a thermophoretic force
,”
J. Chem. Phys.
147
,
094906
(
2017
).
11.
O. Z.
Sharaf
,
A. N.
Al-Khateeb
,
D. C.
Kyritsis
, and
E.
Abu-Nada
, “
Direct absorption solar collector (DASC) modelling and simulation using a novel Eulerian-Lagrangian hybrid approach: Optical, thermal and hydrodynamic interactions
,”
Appl. Energy
231
,
1132
1145
(
2018
).
12.
O. Z.
Sharaf
,
D. C.
Kyritsis
,
A. N.
Al-Khateeb
, and
E.
Abu-Nada
, “
Effect of bottom surface optical boundary conditions on nanofluid-based DASC: Parametric study and optimization
,”
Sol. Energy
164
,
210
223
(
2018
).
13.
T. B.
Gorji
and
A. A.
Ranjbar
, “
Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology
,”
Sol. Energy
122
,
314
325
(
2015
).
14.
B. V.
Balakin
and
K. V.
Kutsenko
, “
Magnetic enhancement of photothermal heating in ferrofluids
,”
J. Phys.
1133
,
012011
(
2018
).
15.
B. V.
Balakin
,
O. V.
Zhdaneev
,
A.
Kosinska
, and
K. V.
Kutsenko
, “
Direct absorption solar collector with magnetic nanofluid: CFD model and parametric analysis
,”
Renewable Energy
136
,
23
32
(
2019
).
16.
M.
Lucas
,
P.
Kosinski
, and
B. V.
Balakin
, “
Eulerian-Eulerian model for photothermal energy conversion in nanofluids
,”
AIP Conf. Proc.
2116
,
030011
(
2019
).
17.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
1983
).
18.
A. S.
Hellestø
,
M.
Ghaffari
,
B. V.
Balakin
, and
A. C.
Hoffmann
, “
A parametric study of cohesive particle agglomeration on a shear flow—Numerical simulations by the discrete element method
,”
J. Dispersion Sci. Technol.
38
(
5
),
611
620
(
2017
).
19.
W.
Wagner
and
A.
Pruß
, “
The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,”
J. Phys. Chem. Ref. Data
31
,
387
535
(
2002
).
20.
SPS Simcenter
,
STAR-CCM+ User Guide for Version 13.06
(SPS Simcenter,
2019
).
21.
F.
Duan
,
T. F.
Wong
, and
A.
Crivoi
, “
Dynamic viscosity measurement in non-Newtonian graphite nanofluids
,”
Nanoscale Res. Lett.
7
,
360
(
2012
).
22.
C. T.
Crowe
,
J. D.
Schwartzkopf
,
M.
Sommerfeld
, and
Y.
Tsuji
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
2012
).
23.
J. R.
Brock
, “
On the theory of thermal forces acting on aerosol particles
,”
J. Colloid Sci.
17
,
768
780
(
1962
).
24.
M.
Kalteh
,
A.
Abbassi
,
M.
Saffar-Avval
, and
J.
Harting
, “
Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel
,”
Int. J. Heat Fluid Flow
32
,
107
116
(
2011
).
25.
S. K.
Hota
and
G.
Diaz
, “
Activated carbon dispersion as absorber for solar water evaporation: A parametric analysis
,”
Sol. Energy
184
,
40
51
(
2019
).
26.
R. A.
Taylor
,
P. E.
Phelan
,
T. P.
Ottanicar
,
R.
Adrian
, and
R.
Prasher
, “
Nanofluid optical property characterization: Towards efficient direct absorption solar collectors
,”
Nanoscale Res. Lett.
6
,
225
(
2011
).
27.
G. M.
Hale
and
M. R.
Querry
, “
Optical constants of water in the 200-nm to 200-μm wavelength region
,”
Appl. Opt.
12
,
555
563
(
1973
).
28.
H.
Phillip
and
E.
Taft
, “
Kramers-Kronig analysis of reflectance data for diamond
,”
Phys. Rev.
136
,
A1445
A1448
(
1964
).
29.
R.
Bird
,
R.
Hulstrom
, and
L.
Lewis
, “
Terrestrial solar spectral data sets
,”
Sol. Energy
30
,
563
573
(
1983
).
30.
C. A.
Gueymard
,
D.
Myers
, and
K.
Emery
, “
Proposed reference irradiance spectra for solar energy systems testing
,”
Sol. Energy
73
,
443
467
(
2002
).
31.
C. A.
Gueymard
, “
The sun's total and spectral irradiance for solar energy applications and solar radiation models
,”
Sol. Energy
76
,
423
453
(
2004
).
32.
L. M.
Adams
and
J. L.
Nazareth
, “
Linear and nonlinear conjugate gradient-related methods
,” in
Proceedings in Applied Mathematics Series
(
1996
), Vol.
85
.
33.
ASHRAE
, ANSI/ASHRAE 93-1986 (RA 91),
Methods of Testing to Determine the Thermal Performance of Solar Collectors
(
ANSI
,
1991
).
You do not currently have access to this content.