The output of ground-based, solar power generation systems is strongly dependent on cloud cover, which is the main contributor to solar power variability and uncertainty. Cloud optical properties are typically over-simplified in forecasting applications due to the lack of real-time, accurate estimates. In this work, we introduce a method, the Spectral Cloud Optical Property Estimation (SCOPE), for estimating cloud optical properties directly from high-resolution (5-min, 2 km) imagery from Geostationary Operational Environmental Satellite (GOES)-R, which is the newest generation of the GOES system. The SCOPE method couples a two-stream, spectrally resolved radiative model with the longwave GOES-R sensor output to simultaneously estimate the cloud optical depth, cloud top height, and cloud thickness during both day and night at 5-min intervals. The accuracy of SCOPE is evaluated using one year (2018) of downwelling longwave (DLW) radiation measurements from the Surface Radiation Budget Network, which consists of seven sites spread across climatically diverse regions of the contiguous United States. During daytime clear-sky periods, SCOPE predicts DLW within instrument uncertainty (10 W m−2) for four of the seven locations, with the remaining locations yielding errors of the order of 11.2, 17.7, and 20.2 W m−2. For daytime cloudy-sky, daytime all-sky (clear or cloudy), and nighttime all-sky periods, SCOPE achieves root mean square error values of 23.0–34.5 W m−2 for all seven locations. These results, together with the low-latency of the method (∼1 s per sample), show that SCOPE provides a viable solution to real-time, accurate estimation of cloud optical properties for both day and night.

1.
R.
Marquez
,
V.
Gueorguiev
, and
C. F. M.
Coimbra
, “
Forecasting of global horizontal irradiance using sky cover indices
,”
J. Sol. Energy Eng.
135
,
0110171
(
2012
).
2.
R.
Marquez
and
C. F. M.
Coimbra
, “
Intra-hour DNI forecasting methodology based on cloud tracking image analysis
,”
Sol. Energy
91
,
327
336
(
2013
).
3.
Y.
Chu
,
H. T. C.
Pedro
,
L.
Nonnenmacher
,
R. H.
Inman
,
Z.
Liao
, and
C. F. M.
Coimbra
, “
A smart image-based cloud detection system for intra-hour solar irradiance forecasts
,”
J. Atmos. Oceanic Technol.
31
,
1995
2007
(
2014
).
4.
Y.
Chu
,
M.
Li
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
Real-time forecasting of solar irradiance ramps with smart image processing
,”
Sol. Energy
114
,
91
104
(
2015
).
5.
D. P.
Larson
,
L.
Nonnenmacher
, and
C. F. M.
Coimbra
, “
Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest
,”
Renewable Energy
91
,
11
20
(
2016
).
6.
D. P.
Larson
and
C. F. M.
Coimbra
, “
Direct power output forecasts from remote sensing image processing
,”
J. Sol. Energy Eng.
104
,
021011
(
2018
).
7.
M.
Li
,
Y.
Chu
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
, “
Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts
,”
Renewable Energy
86
,
1362
1371
(
2016
).
8.
C. W.
Chow
,
B.
Urquhart
,
M.
Lave
,
A.
Dominguez
,
J.
Kleissl
,
J.
Shields
, and
B.
Washom
, “
Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed
,”
Sol. Energy
85
,
2881
2893
(
2011
).
9.
J.
Li
,
W. P.
Menzel
, and
A. J.
Schreiner
, “
Variational retrieval of cloud parameters from goes sounder longwave cloudy radiance measurements
,”
J. Appl. Meteorol.
40
,
312
330
(
2001
).
10.
A.
Walther
and
A. K.
Heidinger
, “
Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-X
,”
J. Appl. Meteorol. Climatol.
51
,
1371
1390
(
2012
).
11.
M.
Li
,
Z.
Liao
, and
C. F. M.
Coimbra
, “
Spectral model for clear sky atmospheric longwave radiation
,”
J. Quant. Spectrosc. Radiative Transfer
209
,
196
211
(
2018
).
12.
T. J.
Schmit
,
M. M.
Gunshor
,
W. P.
Menzel
,
J. J.
Gurka
,
J.
Li
, and
A. S.
Bachmeier
, “
Introducing the next-generation advanced baseline imager on GOES-R
,”
Bull. Am. Meteorol. Soc.
86
,
1079
1096
(
2005
).
13.
M.
Li
,
Y.
Jiang
, and
C. F. M.
Coimbra
, “
On the determination of atmospheric longwave irradiance under all-sky conditions
,”
Sol. Energy
144
,
40
48
(
2017
).
14.
B.-Y.
Kim
,
K.-T.
Lee
,
J.-B.
Jee
, and
I.-S.
Zo
, “
Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data
,”
Remote Sens. Environ.
204
,
498
508
(
2018
).
15.
M.
Li
and
C. F. M.
Coimbra
, “
On the effective spectral emissivity of clear skies and the radiative cooling potential of selectively designed materials
,”
Int. J. Heat Mass Transfer
135
,
1053
1062
(
2019
).
16.
R. V.
Kochanov
,
I. E.
Gordon
,
L. S.
Rothman
,
P.
Wcisło
,
C.
Hill
, and
J. S.
Wilzewski
, “
HITRAN application programming interface (HAPI): A comprehensive approach to working with spectroscopic data
,”
J. Quant. Spectrosc. Radiative Transfer
177
,
15
30
(
2016
).
17.
E. J.
Mlawer
,
V. H.
Payne
,
J.-L.
Moncet
,
J. S.
Delamere
,
M. J.
Alvarado
, and
D. C.
Tobin
, “
Development and recent evaluation of the MT_CKD model of continuum absorption
,”
Philos. Trans. R. Soc. London A
370
,
2520
2556
(
2012
).
18.
M.
Li
,
H. B.
Peterson
, and
C. F. M.
Coimbra
, “
Radiative cooling resource maps for the contiguous united states
,”
J. Renewable Sustainable Energy
11
,
036501
(
2019
).
19.
H.
Lee
and
R.
Buckius
, “
Scaling anisotropic scattering in radiation heat transfer for a planar medium
,”
J. Heat Transfer
104
,
68
75
(
1982
).
20.
Z.
Liao
,
M.
Li
, and
C. F.
Coimbra
, “
Anisotropic corrections for the downwelling radiative heat transfer flux from various types of aerosols
,”
Int. J. Heat Mass Transfer
136
,
1006
1016
(
2019
).
21.
D. K.
Edwards
, “
The plating algorithm for radiation script-F transfer factor
,”
J. Heat Transfer
108
,
237
238
(
1986
).
22.
M.
Li
,
Z.
Liao
, and
C. F. M.
Coimbra
, “
Efficient model for evaluation of spectral and vertical distributions of atmospheric longwave radiation
,” in
International Heat Transfer Conference
(
2018
), Vol.
16
.
23.
R. H.
Inman
,
J. G.
Edson
, and
C. F. M.
Coimbra
, “
Impact of local turbidity estimation on clear sky models for direct normal irradiance
,”
Sol. Energy
117
,
125
138
(
2015
).
You do not currently have access to this content.