Low-grade wind energy, commonly referred to wind speeds lower than 6 m/s, is not suitable for the currently developed horizontal-axis wind turbines. One of the efficient methods to increase the wind speed passing through the wind turbine is enclosing the turbine inside a suitably designed shroud. In the current study, extensive numerical studies are carried out on a flanged converging–diverging duct to reach the maximum possible velocity increment. The effects of several geometrical parameters on the velocity increment and fluid dynamics of the shroud are investigated in detail. The effects of the diffuser opening angle, flange height, length of the inlet converging section, length of a constant-cross-section tube between the converging and diverging sections, and the presence of a wind turbine inside the shroud are examined. The results show that for a diffuser with a length to diameter ratio of 1.0, the velocity increment is maximum for a diameter ratio of 1.66 and a flange height to diameter ratio of 0.15. Adding a converging and a constant-cross-section tube to the flanged diffuser, a maximum velocity increment of 1.57 with an almost uniform velocity is achieved. This means that the available wind energy is 3.87 times the incident wind energy; hence, it is suitable for mounting more than one wind turbine. The optimum duct design is also subjected to wind tunnel measurements, where a good agreement with the numerical data is observed.

1.
P.
Jain
,
Wind Energy Engineering
(
McGraw-Hill
,
2011
).
2.
D.
Astolfi
,
F.
Castellani
,
A.
Lombardi
, and
L.
Terzi
, “
About the extension of wind turbine power curve in the high wind region
,”
J. Sol. Energy Eng.
141
,
014501
(
2019
).
3.
G. J. W.
van Bussel
, “
The science of making more torque from wind: Diffuser experiments and theory revisited
,”
J. Phys.
75
,
012010
(
2007
).
4.
C.
Hiel
and
G. J.
Korzeniowski
,
Diffuser-Augmented Wind Turbine
(
Google Patents
,
2007
).
5.
H.
Zhu
,
M.
Sueyoshi
,
C.
Hu
, and
S.
Yoshida
, “
A study on a floating type shrouded wind turbine: Design, modeling and analysis
,”
Renewable Energy
134
,
1099
1113
(
2019
).
6.
N. K
. Siavash
,
G.
Najafi
,
T. T
. Hashjin
,
B.
Ghobadian
, and
E.
Mahmoodi
, “
Mathematical modeling of a horizontal axis shrouded wind turbine
,”
Renewable Energy
146
,
856
866
(
2020
).
7.
S.
Mauro
,
S.
Brusca
,
R.
Lanzafame
, and
M.
Messina
, “
CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance
,”
Renewable Energy
141
,
28
39
(
2019
).
8.
M. M.
Nunes
,
R. C. F.
Mendes
,
T. F.
Oliveira
, and
A. C. B.
Junior
, “
An experimental study on the diffuser-enhanced propeller hydrokinetic turbines
,”
Renewable Energy
133
,
840
848
(
2019
).
9.
J. R. P.
Vaz
,
A. L. A.
Mesquita
,
A. L.
Amarante Mesquita
,
T. F.
de Oliveira
, and
A. C. B.
Junior
, “
Powertrain assessment of wind and hydrokinetic turbines with diffusers
,”
Energy Convers. Manage.
195
,
1012
1021
(
2019
).
10.
R. A.
Oman
and
K. M.
Foreman
, “
Advantages of the diffuser-augmented wind turbine
,” in
NSF/NASA Wind Energy Conversion Systems Workshop Proceedings
, NSF/RA/W-73-006 (
1973
).
11.
K. M.
Foreman
,
B.
Gilbert
, and
R. A.
Oman
, “
Diffuser augmentation of wind turbines
,”
Sol. Energy
20
,
305
311
(
1978
).
12.
K. M.
Foreman
,
Preliminary Design and Economic Investigations of Diffuser-Augmented Wind Turbines (DAWT)
(
Solar Energy Research Institute
,
University of North Texas Libraries, Digital Library
,
USA
,
1981
).
13.
K. M.
Foreman
, “
Size effects in DAWT innovative wind energy system design
,”
J. Sol. Energy Eng.
105
,
401
407
(
1983
).
14.
O.
Igra
, “
Design and performance of a turbine suitable for an aerogenerator
,”
Energy Convers.
15
,
143
151
(
1976
).
15.
O.
Igra
, “
Compact shrouds for wind turbines
,”
Energy Convers.
16
,
149
157
(
1977
).
16.
O.
Igra
, “
Research and development for shrouded wind turbines
,”
Energy Convers. Manage.
21
,
13
48
(
1981
).
17.
B. L.
Gilbert
,
R. A.
Oman
, and
K. M.
Foreman
, “
Fluid dynamics of diffuser-augmented wind turbines
,”
J. Energy
2
,
368
374
(
1978
).
18.
B. L.
Gilbert
and
K. M.
Foreman
, “
Experimental demonstration of the diffuser-augmented wind turbine concept
,”
J. Energy
3
,
235
240
(
1979
).
19.
R. G. J.
Flay
,
T. A.
Nash
, and
D. G.
Phillips
, “
Aerodynamic analysis and monitoring of the Vortec 7 diffuser augmented wind turbine
,” in
IPENZ Conference 98: The Sustainable City
(
Institution of Professional Engineers
, Wellington, NZ,
1998
), pp.
30
35
.
20.
D. G.
Phillips
,
R. G. J.
Flay
, and
T. N.
Nash
, “
Aerodynamic analysis and monitoring of the Vortec 7 diffuser-augmented wind turbine
,”
Trans. IPENZ
26
(
1
),
13
(
1999
).
21.
D. G.
Phillips
,
P. J.
Richards
,
G. D.
Mallinson
, and
R. G. J.
Flay
, “
Computational modelling of diffuser designs for a diffuser augmented wind turbine
,” in
13th Australian Fluid Mechanics Conference
,
Monash University
, Melbourne, Australia,
1998
D. G.
Phillips
,
P. J.
Richards
,
G. D.
Mallinson
, and
R.
Flay
, [
Phoenics J. Comput. Fluid Dyn. Appl.
12
,
158
172
(
1999
)].
22.
M. O. L.
Hansen
,
N. N.
Sørensen
, and
R.
Flay
, “
Effect of placing a diffuser around a wind turbine
,”
Wind Energy
3
,
207
213
(
2000
).
23.
K. I.
Abe
and
Y.
Ohya
, “
An investigation of flow fields around flanged diffusers using CFD
,”
J. Wind Eng. Ind. Aerodyn.
92
,
315
330
(
2004
).
24.
T.
Matsushima
,
S.
Takagi
, and
S.
Muroyama
, “
Characteristics of a highly efficient propeller type small wind turbine with a diffuser
,”
Renewable Energy
31
,
1343
1354
(
2006
).
25.
Y.
Ohya
,
T.
Karasudani
,
A.
Sakurai
,
K. I.
Abe
, and
M.
Inoue
, “
Development of a shrouded wind turbine with a flanged diffuser
,”
J. Wind Eng. Ind. Aerodyn.
96
,
524
539
(
2008
).
26.
Y.
Ohya
and
T.
Karasudani
, “
A shrouded wind turbine generating high output power with wind-lens technology
,”
Energies
3
,
634
(
2010
).
27.
S.
Takahashi
,
Y.
Hata
,
Y.
Ohya
,
T.
Karasudani
, and
T.
Uchida
, “
Behavior of the blade tip vortices of a wind turbine equipped with a brimmed-diffuser shroud
,”
Energies
5
,
5229
5242
(
2012
).
28.
S.
Hjort
and
H.
Larsen
, “
A multi-element diffuser augmented wind turbine
,”
Energies
7
,
3256
(
2014
).
29.
S. A. H.
Jafari
and
B.
Kosasih
, “
Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid dynamics simulations
,”
J. Wind Eng. Ind. Aerodyn.
125
,
102
110
(
2014
).
30.
K.
Mansour
and
P.
Meskinkhoda
, “
Computational analysis of flow fields around flanged diffusers
,”
J. Wind Eng. Ind. Aerodyn.
124
,
109
120
(
2014
).
31.
D. A.
Tavares Dias do Rio Vaz
,
A. L.
Amarante Mesquita
,
J. R.
Pinheiro Vaz
,
C. J.
Cavalcante Blanco
, and
J. T.
Pinho
, “
An extension of the blade element momentum method applied to diffuser augmented wind turbines
,”
Energy Convers. Manage.
87
,
1116
1123
(
2014
).
32.
Y.
Liu
and
S.
Yoshida
, “
An extension of the generalized actuator disc theory for aerodynamic analysis of the diffuser-augmented wind turbines
,”
Energy
93
(
Part 2
),
1852
1859
(
2015
).
33.
B.
Kosasih
and
H.
Saleh Hudin
, “
Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model
,”
Renewable Energy
87
,
154
167
(
2016
).
34.
A. M.
El-Zahaby
,
A. E.
Kabeel
,
S. S.
Elsayed
, and
M. F.
Obiaa
, “
CFD analysis of flow fields for shrouded wind turbine's diffuser model with different flange angles
,”
Alexandria Eng. J.
56
,
171
179
(
2017
).
35.
J. R. P.
Vaz
and
D. H.
Wood
, “
Aerodynamic optimization of the blades of diffuser-augmented wind turbines
,”
Energy Convers. Manage.
123
,
35
45
(
2016
).
36.
U.
Göltenbott
,
Y.
Ohya
,
S.
Yoshida
, and
P.
Jamieson
, “
Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems
,”
Renewable Energy
112
,
25
34
(
2017
).
37.
F.
Sorribes-Palmer
,
A.
Sanz-Andres
,
L.
Ayuso
,
R.
Sant
, and
S.
Franchini
, “
Mixed CFD-1D wind turbine diffuser design optimization
,”
Renewable Energy
105
,
386
399
(
2017
).
38.
H. A.
Heikal
,
O. S. M.
Abu-Elyazeed
,
M. A. A.
Nawar
,
Y. A.
Attai
, and
M.
Mohamed
, “
On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine
,”
Renewable Energy
125
,
295
305
(
2018
).
39.
J. R. P.
Vaz
and
D. H.
Wood
, “
Effect of the diffuser efficiency on wind turbine performance
,”
Renewable Energy
126
,
969
977
(
2018
).
40.
N.
Keramat Siavash
,
G.
Najafi
,
T.
Tavakkoli Hashjin
,
B.
Ghobadian
, and
E.
Mahmoodi
, “
An innovative variable shroud for micro wind turbines
,”
Renewable Energy
145
,
1061
1072
(
2020
).
41.
V.
Kumar
and
S.
Saha
, “
Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory
,”
Renewable Energy
134
,
961
969
(
2019
).
42.
M.
Anbarsooz
, “
Aerodynamic performance of helical Savonius wind rotors with 30° and 45° twist angles: Experimental and numerical studies
,”
Proc. Inst. Mech. Eng., Part A
230
,
523
534
(
2016
).
43.
M.
Anbarsooz
,
M.
Amiri
, and
I.
Rashidi
, “
A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation
,”
Energy
168
,
207
221
(
2019
).
44.
M.
Anbarsooz
,
M. S.
Hesam
, and
B.
Motakef Imani
, “
A numerical study on the geometrical parameters affecting the aerodynamic performance of Invelox
,”
IET Renewable Power Gener.
11
,
791
798
(
2017
).
45.
M.
Amiri
and
M.
Anbarsooz
, “
Improving the energy conversion efficiency of a Savonius rotor using automatic valves
,”
J. Sol. Energy Eng.
141
,
031017
031010
(
2019
).
46.
M.
Amiri
,
A. R.
Teymourtash
, and
M.
Kahrom
, “
Experimental and numerical investigations on the aerodynamic performance of a pivoted Savonius wind turbine
,”
Proc. Inst. Mech. Eng., Part A
231
,
87
101
(
2017
).
47.
ANSYS, Inc.
,
ANSYS Manual, Release 19.0
(
ANSYS, Inc.
,
2018
).
48.
A.
Kianifar
and
M.
Anbarsooz
, “
Blade curve influences on the performance of Savonius rotors: Experimental and numerical
,”
Proc. Inst. Mech. Eng., Part A
225
,
343
350
(
2011
).
49.
S.
Smith
,
A.-B.
Syed
,
K.
Liu
,
M.
Yu
,
W.
Zhu
,
G.
Huang
 et al, “
A comprehensive aero-hydro-structural analysis of a 5 MW offshore wind turbine system
,”
J. Sol. Energy Eng.
141
,
061005
(
2019
).
50.
M.
Anbarsooz
, “
A numerical study on wind dams: A novel approach to enhance wind potential using natural barriers
,”
Energy Convers. Manage.
205
,
112454
(
2020
).
51.
S.
Roy
and
U. K.
Saha
, “
An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine
,”
Energy Convers. Manage.
86
,
418
427
(
2014
).
52.
R. J.
Moffat
, “
Contributions to the theory of single-sample uncertainty analysis
,”
J. Fluids Eng.
104
,
250
258
(
1982
).
53.
R. J.
Moffat
, “
Describing the uncertainties in experimental results
,”
Exp. Therm. Fluid Sci.
1
,
3
17
(
1988
).
54.
K.
Abe
,
M.
Nishida
,
A.
Sakurai
,
Y.
Ohya
,
H.
Kihara
,
E.
Wada
 et al, “
Experimental and numerical investigations of flow fields behind a small wind turbine with a flanged diffuser
,”
J. Wind Eng. Ind. Aerodyn.
93
,
951
970
(
2005
).
55.
A.
Ozbay
,
W.
Tian
, and
H.
Hu
, “
Experimental investigation on the wake characteristics and aeromechanics of dual-rotor wind turbines
,”
J. Eng. Gas Turbines Power
138
,
042602
(
2016
).
You do not currently have access to this content.