The information on downward longwave (LW) radiation is necessary for the design of the passive cooling system of buildings. Because the measured LW radiation data are not available in most locations, few studies have focused on the modeling of LW radiation in China. In this study, empirical models for estimating LW radiation were proposed under all-sky conditions based on the meteorological parameters such as the ambient dry-bulb temperature, water vapor pressure, and relative humidity, which can be classified into four cases: All day, nighttime, and daytimes with and without considering the cloud modification factor. The proposed models performed are well compared with the existing models. The LW radiation datasets for 351 locations of China were developed using the proposed model for all the day based on the typical meteorological year. Moreover, the distribution map of radiative cooling potential in July was created using the proposed model for the nighttime, which can provide a valuable reference for building cooling design.

1.
M. G.
Iziomon
,
G.
Moses
,
H. E. L. M. U. T.
Mayer
, and
A. N. D. R. E. A. S.
Matzarakis
, “
Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization
,”
J. Atmos. Sol.-Terr. Phys.
65
(
10
),
1107
1116
(
2003
).
2.
S.
Vall
and
A.
Castell
, “
Radiative cooling as low-grade energy source: A literature review
,”
Renewable Sustainable Energy Rev.
77
,
803
820
(
2017
).
3.
M.
Li
,
Y.
Jiang
, and
C. F.
Coimbra
, “
On the determination of downward long-wave irradiance under all-sky conditions
,”
Sol. Energy
144
,
40
48
(
2017
).
4.
M. A.
Goforth
,
G. W.
Gilchrist
, and
J. D.
Sirianni
, “
Cloud effects on thermal downwelling sky radiance
,”
Proc. SPIE
4710
,
203
213
(
2002
).
5.
K.
Wang
and
R. E.
Dickinson
, “
Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses
,”
Rev. Geophys.
51
(
2
),
150
185
, (
2013
).
6.
L.
Evangelisti
,
C.
Guattari
, and
F.
Asdrubali
, “
On the sky temperature models and their influence on buildings energy performance: A critical review
,”
Energy Build.
183
,
607
625
(
2019
).
7.
F. X.
Kneizys
 et al., Users guide to LOWTRAN 7. No. AFGL-TR-88-0177. Air Force Geophysics Lab Hanscom AFB MA,
1988
.
8.
H. E.
Snell
 et al., “
Validation of FASE (FASCODE for the environment) and MODTRAN3: Updates and comparisons with clear-sky measurements
,”
Proc. SPIE
2578
,
194
204
(
1995
).
9.
I.
Masiri
 et al., “
A technique for mapping downward longwave radiation using satellite and ground-based data in the tropics
,”
Renewable Energy
103
,
171
179
(
2017
).
10.
D.
Brunt
, “
Notes on radiation in the atmosphere. I
,”
Quart. J. R. Meteorol. Soc.
58
(
247
),
389
420
(
1932
).
11.
W. M.
Elsasser
, “
Heat transfer by infrared radiation in the atmosphere
,”
Harv. Meteor. Stud.
6
,
107
(
1942
).
12.
W. C.
Swinbank
, “
Long-wave radiation from clear skies
,”
Quart. J. R. Meteorol. Soc.
89
(
381
),
339
348
(
1963
).
13.
S. B.
Idso
and
R. D.
Jackson
, “
Thermal radiation from the atmosphere
,”
J. Geophys. Res.
74
(
23
),
5397
5403
, (
1969
).
14.
S. B.
Idso
, “
A set of equations for full spectrum and 8‐to 14‐μm and 10.5‐to 12.5‐μm thermal radiation from cloudless skies
,”
Water Resour. Res.
17
(
2
),
295
304
, (
1981
).
15.
M.
Centeno
, “
New formulae for the equivalent night sky emissivity
,”
Sol. Energy
28
(
6
),
489
498
(
1982
).
16.
P.
Berdahl
and
R.
Fromberg
, “
The thermal radiance of clear skies
,”
Sol. Energy
29
(
4
),
299
314
(
1982
).
17.
W.
Brutsaert
, “
On a derivable formula for long-wave radiation from clear skies
,”
Water Resour. Res.
11
(
5
),
742
744
, (
1975
).
18.
T. M.
Crawford
and
C. E.
Duchon
, “
An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation
,”
J. Appl. Meteorol.
38
(
4
),
474
480
(
1999
).
19.
J.
Wang
 et al., “
Estimation of surface longwave radiation over the Tibetan plateau region using MODIS data for cloud-free skies
,”
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
7
(
9
),
3695
3703
(
2014
).
20.
Q.
Zhang
and
L.
Yu
, “
Potentials of passive cooling for passive design of residential buildings in China
,”
Energy Procedia
57
,
1726
1732
(
2014
).
21.
Q.
Zhang
and
H.
Yang
,
Typical Meteorological Database Handbook for Buildings
(
China Building Industry Press
,
Beijing, China
,
2012
).
23.
R.
Kumar
and
L.
Umanand
, “
Estimation of global radiation using clearness index model for sizing photovoltaic system
,”
Renewable Energy
30
(
15
),
2221
2233
(
2005
).
24.
J. A.
Duffie
,
W. A.
Beckman
, and
W. M.
Worek
,
Solar Engineering of Thermal Processes
(
Wiley
,
New York
,
2013
), Vol.
3
.
25.
V.
Sridhar
and
R. L.
Elliott
, “
On the development of a simple downwelling longwave radiation scheme
,”
Agric. For. Meteorol.
112
(
3–4
),
237
243
(
2002
).
26.
Y.
Zhai
 et al., “
Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
,”
Science
355
(
6329
),
1062
1066
(
2017
).
27.
M.
Li
,
H. B.
Peterson
, and
C. F.
Coimbra
, “
Radiative cooling resource maps for the contiguous United States
,”
J. Renewable Sustainable Energy
11
(
3
),
036501
(
2019
).
28.
F.
Kasten
and
A. T.
Young
, “
Revised optical air mass tables and approximation formula
,”
Appl. Opt.
28
(
22
),
4735
4738
(
1989
).
29.
P.
Ineichen
and
R.
Perez
, “
A new airmass independent formulation for the Linke turbidity coefficient
,”
Sol. Energy
73
(
3
),
151
157
(
2002
).
30.
P.
Ineichen
, “
Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content
,”
Sol. Energy
82
(
11
),
1095
1097
(
2008
).
31.
R. H.
Inman
,
J. G.
Edson
, and
C. F.
Coimbra
, “
Impact of local broadband turbidity estimation on forecasting of clear sky direct normal irradiance
,”
Sol. Energy
117
,
125
138
(
2015
).
You do not currently have access to this content.