Optimal planning of resources with daily/real time resource management is important for obtaining the most benefit from microgrids. There exist several mathematical models and heuristic rule based policies for microgrid resource management. Mathematical models provide optimal results, while heuristic policies are simple to implement but cannot guarantee optimality. Although both models are used in the literature, studies do not analyze the benefits of using mathematical models over heuristic rule based ones. This study proposes a mixed integer programming based mathematical model and a rule based model and compares their performances for a newly established microgrid at Turkey. Both models aim to minimize the daily cost of the microgrid by planning the use, sale, and storage of the energy obtained from the renewable resources. The results quantify the benefits of using the mathematical model over the rule based model for the case microgrid under different conditions. The analysis shows that the difference between the models' performances changes according to the energy pricing policy and seasons. Under certain conditions, the simple rule based policy can provide close to optimal results.

1.
M.
Erol-Kantarci
,
B.
Kantarci
, and
H. T.
Mouftah
, “
Reliable overlay topology design for the smart microgrid network
,”
IEEE Network
25
,
38
43
(
2011
).
2.
M. F.
Zia
,
E.
Elbouchikhi
, and
M.
Benbouzid
, “
Microgrids energy management systems: A critical review on methods, solutions, and prospects
,”
Appl. Energy
222
,
1033
1055
(
2018
).
3.
G.
Vera
,
E.
Yimy
,
R.
Dufo-López
, and
J. L.
Bernal-Agustín
, “
Energy management in microgrids with renewable energy sources: A literature review
,”
Appl. Sci.
9
,
3854
(
2019
).
4.
K.
Sundaramoorthy
and
A.
Sankar
, “
Performance evaluation of a control strategy developed for a hybrid energy system integrated in dc-ac microgrids
,”
Electr. Power Compon. Syst.
42
,
1762
1770
(
2014
).
5.
B.
Kocaman
, “
Mikro şebekeler için örnek bir enerji yönetimi uygulaması
,”
Bitlis Eren Univ. Fen Bilimleri Derg.
3
(
1
),
35
52
(
2014
).
6.
M.
Ding
,
Y.
Zhang
,
M.
Mao
,
W.
Yang
, and
X.
Liu
, “
Operation optimization for microgrids under centralized control
,” in
2010 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)
(
IEEE
,
2010
), pp.
984
987
.
7.
H.
Kanchev
,
D.
Lu
,
F.
Colas
,
V.
Lazarov
, and
B.
Francois
, “
Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications
,”
IEEE Trans. Ind. Electron.
58
,
4583
4592
(
2011
).
8.
T.
Wu
,
Q.
Yang
,
Z.
Bao
, and
W.
Yan
, “
Coordinated energy dispatching in microgrid with wind power generation and plug-in electric vehicles
,”
IEEE Trans. Smart Grid
4
,
1453
1463
(
2013
).
9.
B.
Khan
and
P.
Singh
, “
Selecting a meta-heuristic technique for smart micro-grid optimization problem: A comprehensive analysis
,”
IEEE Access
5
,
13951
13977
(
2017
).
10.
Y.
Wang
,
Y.
Huang
,
Y.
Wang
,
M.
Zeng
,
F.
Li
,
Y.
Wang
, and
Y.
Zhang
, “
Energy management of smart micro-grid with response loads and distributed generation considering demand response
,”
J. Clean. Prod.
197
,
1069
1083
(
2018
).
11.
G.
Aghajani
,
H.
Shayanfar
, and
H.
Shayeghi
, “
Demand side management in a smart micro-grid in the presence of renewable generation and demand response
,”
Energy
126
,
622
637
(
2017
).
12.
M. J.
Salehpour
 et al, “
A two-stage stochastic optimization based-on monte carlo simulation for maximizing the profitability of a smart microgrid
,”
J. Hyperstruct.
7
,
67
81
(
2019
).
13.
J.
Shen
,
C.
Jiang
, and
B.
Li
, “
Controllable load management approaches in smart grids
,”
Energies
8
,
11187
11202
(
2015
).
14.
M.
Parvizimosaed
,
F.
Farmani
, and
A.
Anvari-Moghaddam
, “
Optimal energy management of a micro-grid with renewable energy resources and demand response
,”
J. Renewable Sustainable Energy
5
,
053148
(
2013
).
15.
M.
Silva
,
T.
Sousa
,
S.
Ramos
,
Z.
Vale
, and
H.
Morais
, “
Distributed energy resources scheduling considering real-time resources forecast
,” in
2014 IEEE PES General Meeting—Conference and Exposition
(
IEEE
,
2014
), pp.
1
5
.
16.
S.
Gonçalves
,
H.
Morais
,
T.
Sousa
, and
Z.
Vale
, “
Energy resource scheduling in a real distribution network managed by several virtual power players
,” in
2012 IEEE PES Transmission and Distribution Conference and Exposition (T&D)
(
IEEE
,
2012
), pp.
1
8
.
17.
G.
Chang
,
H.
Lu
, and
H.
Su
, “
Short-term distributed energy resource scheduling for a dc microgrid
,”
Energy Power Eng.
5
,
15
(
2013
).
18.
M.
Sechilariu
,
F.
Locment
, and
B.
Wang
, “
Photovoltaic electricity for sustainable building. efficiency and energy cost reduction for isolated dc microgrid
,”
Energies
8
,
7945
7967
(
2015
).
19.
M.
Jarrah
,
M.
Jaradat
,
Y.
Jararweh
,
M.
Al-Ayyoub
, and
A.
Bousselham
, “
A hierarchical optimization model for energy data flow in smart grid power systems
,”
Inf. Syst.
53
,
190
200
(
2015
).
20.
N. I.
Nwulu
and
X.
Xia
, “
Optimal dispatch for a microgrid incorporating renewables and demand response
,”
Renewable Energy
101
,
16
28
(
2017
).
21.
V. N.
Coelho
,
I. M.
Coelho
,
B. N.
Coelho
,
M. W.
Cohen
,
A. J.
Reis
,
S. M.
Silva
,
M. J.
Souza
,
P. J.
Fleming
, and
F. G.
Guimarães
, “
Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid
,”
Renewable Energy
89
,
730
742
(
2016
).
22.
C.
Chen
,
J.
Wang
,
F.
Qiu
, and
D.
Zhao
, “
Resilient distribution system by microgrids formation after natural disasters
,”
IEEE Trans. Smart Grid
7
,
958
966
(
2016
).
23.
T.
Ding
,
Y.
Lin
,
G.
Li
, and
Z.
Bie
, “
A new model for resilient distribution systems by microgrids formation
,”
IEEE Trans. Power Syst.
32
,
4145
4147
(
2017
).
24.
W.
Su
,
J.
Wang
, and
J.
Roh
, “
Stochastic energy scheduling in microgrids with intermittent renewable energy resources
,”
IEEE Trans. Smart Grid
5
,
1876
1883
(
2014
).
25.
T. A.
Nguyen
and
M.
Crow
, “
Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost
,”
IEEE Trans. Power Syst.
31
,
2289
2296
(
2016
).
26.
A.
Bhattacharya
,
J. P.
Kharoufeh
, and
B.
Zeng
, “
Managing energy storage in microgrids: A multistage stochastic programming approach
,”
IEEE Trans. Smart Grid
9
,
483
496
(
2018
).
27.
C.
Chen
,
S.
Duan
,
T.
Cai
,
B.
Liu
, and
G.
Hu
, “
Smart energy management system for optimal microgrid economic operation
,”
IET Renewable Power Gener.
5
,
258
267
(
2011
).
28.
C.
Chen
,
S.
Duan
,
T.
Cai
,
B.
Liu
, and
G.
Hu
, “
Optimal allocation and economic analysis of energy storage system in microgrids
,”
IEEE Trans. Power Electron.
26
,
2762
2773
(
2011
).
29.
See https://openei.org/doe-opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states for “
Commercial and Residential Hourly Load Profiles for All Locations in the
United States” (last accessed January 8,
2019
).
30.
See http://www.yegm.gov.tr/yenilenebilir/YEKDEM.aspx for “
Renewable Energy Resources Support Mechanism (YEKDEM)
” (last accessed January 8,
2019
).
You do not currently have access to this content.