Ammonia–water solution is widely used in absorption cycle systems, but the generation of ammonia from solution requires a great amount of heat consumption. In this work, a vertical-tube heat exchanger was adopted as the generator of an ammonia–water absorption cycle. The generation of ammonia from an ammonia–water solution in the generator was experimentally analyzed. The generator has an annular structure: a falling film of ammonia–water solution flows inside the inner tube, and an upflowing water stream flows in the annular space between the outside surface of the inner tube and the inside surface of the outer tube. First, the heat transfer enhancement effect of the annular structure was confirmed using water as the working fluid; then, the effect was tested for an ammonia–water solution. It was found that the heat transfer coefficient of Annulus I (0.5 mm annulus gap) was 316.2% higher than that of Annulus III (2.5 mm annulus gap) at the water flow rate of 50 g⋅s−1 through the annulus space. When the flow rate of the upflowing fluid exceeds a certain value, the effect of heat transfer for these annuli deviates obviously. The solution in the falling film with an initial ammonia concentration of 18.7 wt. % was used in the generation experiment. The outlet ammonia concentration of Annulus I was 12.7% lower than that of Annulus III at the water flow rate of 33.3 g⋅s−1. Based on the Sieder–Tate formula, the Nusselt number correlation equations were developed with ±10% error.

1.
A. S.
Canbolat
,
A. H.
Bademlioglu
,
N.
Arslanoglu
, and
O.
Kaynakli
,
J. Cleaner Prod.
229
,
874
(
2019
).
2.
S. A.
Kholghi
and
S. M. S.
Mahmoudi
,
Sustainable Energy Technol. Assess.
32
,
19
(
2019
).
3.
W.
Huang
,
D.
Zheng
,
X.
Chen
,
L.
Shi
,
X.
Dai
,
Y.
Chen
, and
J.
Xu
,
Renew. Energ.
147
,
2160
(
2020
).
4.
L.
Khani
,
S. M. S.
Mahmoudi
, and
A.
Chitsaz
, Energy and Exergy Analysis of a Novel Combined Power/Cooling Production Cycle Based on Solid Oxide Fuel Cell in Exergy for A Better Environment and Improved Sustainability 1, edited by
F.
Aloui
and
I.
Dincer
(
Springer International Publishing
,
Cham
,
2018
), pp.
1293
1309
.
5.
H.
Wen
,
A.
Wu
,
Z.
Liu
, and
Y.
Shang
,
IEEE Access
7
,
57251
(
2019
).
6.
N. S.
Dhaidan
and
J. M.
Khodadadi
,
J. Renewable Sustainable Energy
9
,
034103
(
2017
).
7.
A. Y.
Al-Otoom
,
A. I.
Tamimi
, and
S. Z.
Abandeh
,
J. Renewable Sustainable Energy
7
,
053103
(
2015
).
8.
B.
Narváez-Romo
,
M.
Chhay
,
E. W.
Zavaleta-Aguilar
, and
J. R.
Simões-Moreira
,
Appl. Therm. Eng.
123
,
1079
(
2017
).
9.
K.
Kwon
and
S.
Jeong
,
Int. J. Refrig.
27
,
955
(
2004
).
10.
H.
Takamatsu
,
H.
Yamashiro
,
N.
Takata
, and
H.
Honda
,
Int. J. Refrig.
26
,
659
(
2003
).
11.
C.
Shi
,
Q.
Chen
,
T.-C.
Jen
, and
W.
Yang
,
Int. J. Heat Mass Transfer
53
,
3372
(
2010
).
12.
Y. W.
Wu
,
G. H.
Su
,
S. Z.
Qiu
, and
B. X.
Hu
,
Int. J. Multiphase Flow
35
,
977
(
2009
).
13.
H. Y.
Zeng
,
S. Z.
Qiu
, and
D. N.
Jia
,
Int. J. Heat Mass Transfer
50
,
492
(
2007
).
14.
S.
Huang
and
C.-H.
Chun
,
Int. J. Heat Mass Transfer
46
,
3707
(
2003
).
15.
M. H.
Farias
,
C. V. M.
Braga
, and
P. R.
de Souza Mendes
,
Int. J. Heat Mass Transfer
52
,
3257
(
2009
).
16.
M.-G.
Kang
,
Int. J. Heat Mass Transfer
54
,
4817
(
2011
).
17.
M.-G.
Kang
,
Int. J. Heat Mass Transfer
52
,
4659
(
2009
).
18.
G.
Lu
and
J.
Wang
,
Appl. Therm. Eng.
28
,
8
(
2008
).
19.
A. M.
Sahar
,
M. R.
Özdemir
,
E. M.
Fayyadh
,
J.
Wissink
,
M. M.
Mahmoud
, and
T. G.
Karayiannis
,
Appl. Therm. Eng.
93
,
1324
(
2016
).
20.
T. M.
Adams
,
S. I.
Abdel-Khalik
,
S. M.
Jeter
, and
Z. H.
Qureshi
,
Int. J. Heat Mass Transfer
41
,
851
(
1998
).
21.
G. P.
Celata
,
M.
Cumo
,
V.
Marconi
,
S. J.
McPhail
, and
G.
Zummo
,
Int. J. Heat Mass Transfer
49
,
3538
(
2006
).
22.
G. P.
Celata
,
G. L.
Morini
,
V.
Marconi
,
S. J.
McPhail
, and
G.
Zummo
,
Exp. Therm. Fluid Sci.
30
,
725
(
2006
).
23.
W.
Owhaib
and
B.
Palm
,
Exp. Therm. Fluid Sci.
28
,
105
(
2004
).
24.
M. E.
Steinke
and
S. G.
Kandlikar
,
J. Heat Transfer
126
,
518
(
2004
).
25.
D.
Liu
,
X.
Weng
, and
X.
Xu
,
Exp. Therm. Fluid Sci.
35
,
1392
(
2011
).
26.
X.
Ma
,
F.
Su
,
J.
Chen
, and
Y.
Zhang
,
J. Mech. Sci. Technol.
21
,
1813
1818
(
2007
).
27.
J. K.
Lee
,
J.
Koo
,
H.
Hong
, and
Y. T.
Kang
,
Int. J. Refrig.
33
,
269
(
2010
).
28.
E.
Oka
,
Heat Exchanger Design Handbook
, translated by
Xu
Zhongquan
(
Petroleum Industry Press
,
Beijing
,
1982
) (in Chinese). [尾花英朗, 熱交換器設計 (工學圖書株式會社, 1986) (in Japanese)].
29.
E. S.
Davis
,
Trans. ASME
65
,
755
(
1943
).
30.
A. S.
Foust
and
G. A.
Christian
,
Am. Inst. Chem. Eng.
36
,
541
(
1940
).
31.
C. C.
Monrad
,
Trans. AIChE
38
,
593
(
1942
).
32.
E. L.
McMillen
,
R. E.
Larson
, and
J. H.
Wiegand
,
Trans. Am. Inst. Chem. Eng.
41
,
147
(
1945
).
You do not currently have access to this content.