Due to their scalability and global abundance of sunlight, photovoltaic panels are a promising option as a renewable energy source. Implementation of photovoltaic technologies on a large scale requires a careful business-case assessment, aimed at the selection of the technological option most appropriate for the local conditions in terms of long-term performance. For this purpose, five types of modules representative of current options on the market were tested under field conditions for five years at a test facility in Germany. The degradation rates of module performance were computed from the obtained photovoltaic power normalized by both recorded and modeled solar irradiance. The results emphasize the relevance of using modeled irradiance data in addition to recorded solar irradiance in order to extract reliable degradation rates. The available methodological tools still have to be adapted to every dataset for the most accurate result. Eventually, robust degradation rates were extracted from experimental power data, based on modeled clear-sky irradiance, and a combination of aggregation and regression strategies. The results show distinctive degradation behaviors of the five available commercial photovoltaic modules in response to the local conditions.

1.
ASTM E2848-13
,
Standard Test Method for Reporting Photovoltaic Non-Concentrator System Performance
(
ASTM International
,
West Conshohocken, PA
,
2018
).
2.
A.
Louwen
,
A. C.
de Waal
,
R. E. I.
Schropp
,
A. P. C.
Faaij
, and
W. G. J. H. M.
van Sark
, “
Comprehensive characterisation and analysis of PV module performance under real operating conditions
,”
Prog. Photovoltaics: Res. Appl.
25
,
218
232
(
2017
).
3.
International Energy Agency
,
Trends 2018 in Photovoltaic Applications
(
International Energy Agency (IEA)
,
2018
).
4.
S.
Philipps
and
W.
Warmuth
,
Photovoltaics Report
(
Fraunhofer ISE
,
2019
).
5.
R. W.
Miles
,
K. M.
Hynes
, and
I.
Forbes
, “
Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues
,”
Prog. Cryst. Growth Charact. Mater.
51
,
1
42
(
2005
).
6.
M. A.
Green
,
Y.
Hishikawa
,
E. D.
Dunlop
,
D. H.
Levi
,
J.
Hohl-Ebinger
,
M.
Yoshita
, and
A. W. Y.
Ho-Baillie
, “
Solar cell efficiency tables (version 53)
,”
Prog. Photovoltaics: Res. Appl.
27
,
3
12
(
2019
).
7.
D. C.
Jordan
and
S. R.
Kurtz
, “
Photovoltaic degradation rates—An analytical review
,”
Prog. Photovoltaics: Res. Appl.
21
,
12
29
(
2013
).
8.
C.
Buerhop
,
D.
Schlegel
,
C.
Vodermayer
, and
M.
Nieß
,
Quality Control of PV-Modules in the Field using Infrared-Thermography
(
EU PVSEC
,
2011
).
9.
M.
Köntges
,
S.
Kurtz
,
C.
Packard
,
U.
Jahn
,
K.
Berger
,
K.
Kato
,
T.
Friesen
,
H.
Liu
, and
M.
Van Iseghem
,
Performance and Reliability of Photovoltaic Systems—Subtask 3.2: Review of Failures of Photovoltaic Modules
(
IEA
,
2014
).
10.
A.
Raykov
,
H.
Nagel
,
D. J.
Amankwah
, and
W.
Bergholz
,
Climate Model for Potential-Induced Degradation of Crystalline Silicon Photovoltaic Modules
(EU PVSEC,
2012
).
11.
J.
Berghold
,
M.
Roericht
,
A.
Böttcher
,
S.
Wendlandt
,
M.
Hanusch
,
S.
Koch
,
P.
Grunow
, and
B.
Stegemann
,
Electrochemical Corrosion within Solar Panels
(
EU PVSEC
,
2012
).
12.
C.
Buerhop
and
J.
Bachmann
, “
Infrared analysis of thin-film photovoltaic modules
,”
J. Phys.: Conf. Ser.
214
(
1
),
012089
(
2010
).
13.
D.
Staebler
and
C.
Wronski
, “
Reversible conductivity changes in discharge-produced amorphous Si
,”
Appl. Phys. Lett.
31
,
292
294
(
1977
).
14.
J.
Meier
,
J.
Spitznagel
,
U.
Kroll
,
C.
Bucher
,
S.
Fay
,
T.
Moriarty
, and
A.
Shah
, “
Potential of amorphous and microcrystalline silicon solar cells
,”
Thin Solid Films
451–452
,
518
524
(
2004
).
15.
H.
Keppner
,
J.
Meier
,
P.
Torres
,
D.
Fischer
, and
A.
Shah
, “
Microcrystalline silicon and micromorph tandem solar cells
,”
Appl. Phys. A
69
,
169
177
(
1999
).
16.
A.
Shah
,
J.
Meier
,
E.
Vallat-Sauvain
,
C.
Droz
,
U.
Kroll
,
N.
Wyrsch
,
J.
Guillet
, and
U.
Graf
, “
Microcrystalline silicon and ‘micromorph’ tandem solar cells
,”
Thin Solid Films
403–404
,
179
187
(
2002
).
17.
N.
Strevel
,
L.
Trippel
, and
M.
Gloeckler
, “
Performance characterization and superior energy yield of first solar PV power plants in high-temperature conditions
,”
Photovoltaics Int.
17
,
7
(
2012
), available at https://www.pv-tech.org/technical-papers/performance-characterization-and-superior-energy-yield-of-first-solar-pv-po.
18.
T.
Carlsson
and
A.
Brinkman
, “
Identification of degradation mechanisms in field-tested CdTe modules
,”
Prog. Photovoltaics: Res. Appl.
14
,
213
224
(
2006
).
19.
M.
Theelen
,
V.
Hans
,
N.
Barreau
,
H.
Steijvers
,
Z.
Vroon
, and
M.
Zeman
, “
The impact of alkali elements on the degradation of CIGS solar cells
,”
Prog. Photovoltaics: Res. Appl.
23
,
537
545
(
2015
).
20.
J.
Wohlgemuth
, “
IEC 61215: What it is and isn't (Presentation)
,” in
PV Module Reliability Workshop
(
NREL
,
2012
).
21.
D. C.
Jordan
,
S. R.
Kurtz
,
K.
VanSant
, and
J.
Newmiller
, “
Compendium of photovoltaic degradation rates
,”
Prog. Photovoltaics: Res. Appl.
24
,
978
989
(
2016
).
22.
D. C.
Jordan
,
C.
Deline
,
S. R.
Kurtz
,
G. M.
Kimball
, and
M.
Anderson
, “
Robust PV degradation methodology and application
,”
IEEE J. Photovoltaics
8
,
525
531
(
2018
).
23.
W.
Luo
,
Y. S.
Khoo
,
P.
Hacke
,
D. C.
Jordan
,
L.
Zhao
,
S.
Ramakrishna
,
A. G.
Aberle
, and
T.
Reindl
, “
Analysis of the long-term performance degradation of crystalline silicon photovoltaic modules in tropical climates
,”
IEEE J. Photovoltaics
9
,
266
271
(
2019
).
24.
M. G.
Deceglie
,
D. C.
Jordan
,
A.
Nag
,
A.
Shinn
, and
C.
Deline
, “
Fleet-scale energy-yield degradation analysis applied to hundreds of residential and nonresidential photovoltaic systems
,”
IEEE J. Photovoltaics
9
,
476
482
(
2019
).
25.
E.
Hasselbrink
,
M.
Anderson
,
Z.
Defreitas
,
M.
Mikofski
,
Y.
Shen
,
S.
Caldwell
,
A.
Terao
,
D.
Kavulak
,
Z.
Campeau
, and
D.
DeGraaff
, “
Validation of the PVLife model using 3 million module-years of live site data
,” in
2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
(
2013
).
26.
D. C.
Jordan
,
M. G.
Deceglie
, and
S. R.
Kurtz
, “
PV degradation methodology comparison—A basis for a standard
,” in
2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
(
2016
).
27.
NREL
, https://www.nrel.gov/pv/rdtools.html for Accurate degradation rate calculation with RdTools; accessed February 15,
2019
.
28.
N.
Aste
,
C.
Del Pero
, and
F.
Leonforte
, “
PV technologies performance comparison in temperate climates
,”
Sol. Energy
109
,
1
10
(
2014
).

Supplementary Material

You do not currently have access to this content.