As the demand for the development of onshore wind farms in areas with low wind speeds and large offshore wind farms increases, the size of the wind turbine and its rotor has also increased rapidly. An increase in the rotor diameter implies an increase in the relative wind velocity (with respect to each cross section in the radial direction of the blade) near the tip region of the blade. This in return accelerates the surface damage caused by the erosion of the leading edge, thereby increasing the frequency of maintenance and lowering competitiveness in the cost of energy. In this study, computational fluid dynamics (CFD) analysis was performed to analyze the correlation between the leading-edge erosion damage and output performance of the blade. CFD simulations were performed using a tip airfoil (NACA 64_618) and a full-scale wind turbine (NREL 5 MW) based on the state of erosion of discarded blades considering approximately 12 years of maintenance-free operation. The irregular erosion at the airfoil leading edge results in premature stall phenomena and reduces the aerodynamic efficiency. Thus, the accurate analysis of the flow separation point and flow change is necessary. Therefore, three-dimensional transient CFD analysis was performed to consider the complex flow generated on the blade surface. The erosion at the leading edge reduced the airfoil lift by up to 23% and drag by 100%, reducing the aerodynamic efficiency, which in effect reduced annual energy production by up to 4%.

1.
See https://www.ge.com/renewableenergy/wind-energy/turbines for “
GE Renewable Energy
” (last accessed May 24,
2018
).
2.
See http://www.mhivestasoffshore.com/ for “
MHI Vestas
(last accessed October 06,
2018
).
3.
J.
Zayas
,
M.
Derby
,
P.
Gilman
, and
S.
Ananthan
, “
Enabling wind power nationwide
,” U.S. Department of Energy, Technical Report No. 8 (
2015
).
4.
M.
Keegan
,
D.
Nash
, and
M. M.
Stack
,
J. Phys. D
46
,
383001
(
2013
).
5.
E. G.
Perez
, “
Wind farm owner's view on rotor blades from O&M to design requirements
,” in
International Conference Wind Turbines Rotor Blade O&M
(
2014
).
6.
B. H.
Buck
and
R.
Langan
,
Aquaculture Perspective of Multi-Use Sites in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene
(
Springer
,
2017
), pp.
1
404
.
7.
E.
Byon
,
E.
Pérez
,
Y.
Ding
, and
L.
Ntaimo
,
Simulation
87
,
1093
(
2011
).
8.
Y.
Dalgic
,
L.
Iraklis
,
T.
Osman
, and
J.
Sol
,
Ocean Eng.
95
,
106
(
2015
).
9.
A.
Sareen
,
S. A.
Chinmay
, and
M. S.
Selig
,
Wind Energy
17
,
1531
(
2014
).
10.
G. M.
Ibrahim
,
K.
Pope
, and
Y. S.
Muzychka
,
J. Wind Eng. Ind. Aerodyn.
173
,
39
(
2018
).
11.
T.
Bai
,
L.
Jingyuan
,
Z.
Weihao
, and
Z.
Zhengping
,
Propul. Power Res.
3
,
82
(
2014
).
12.
M.
Schramm
,
R.
Hamid
,
S.
Bernhard
, and
T.
Kim
,
Energies
10
,
1420
(
2017
).
13.
W.
Han
,
K.
Jonghwa
, and
K.
Bumsuk
,
Renewable Energy
115
,
817
(
2018
).
14.
K.
Jafari
,
H.
Mohammad
, and
F.
Behzad Forouzi
,
Int. J. Renewable Energy Develop.
6
,
273
(
2017
).
15.
F.
Hummel
,
M.
Lötzerich
,
P.
Cardamone
, and
L.
Fottner
,
J. Turbomach.
127
,
453
(
2005
).
16.
F. F.
Zidane
,
K. M.
Saqr
,
G.
Swadener
,
X.
Ma
, and
M. F.
Shehadeh
,
Int. J. Energy Res.
40
,
2054
(
2016
).
17.
I. H.
Abbott
and
A.
Von Doenhoff
,
Theory of Wing Sections: Including a Summary of Airfoil Data
(
Dover Publications
,
1959
).
18.
W. A.
Timmer
, “
An overview of NACA 6-digit airfoil series characteristics with reference to airfoils for large wind turbine blades
,” in
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
2009
).
19.
J.
Jonkman
,
S.
Butterfield
,
W.
Musial
, and
G.
Scott
, “
Definition of a 5-MW reference wind turbine for offshore system development
,” Technical Report No. NREL/TP-500-38060 (
2009
).
20.
D. T.
Griffith
and
T. D.
Ashwill
, “
The Sandia 100-meter all-glass baseline wind turbine blade: SNL100-00
,”
Report No. SAND2011-3779
(
2011
).
21.
B. R.
Resor
, “
Definition of a 5MW/61.5m wind turbine blade reference model
,”
Report No. SAND2013-2569
(
2013
).
22.
H. J. T.
Kooijman
,
C.
Lindenburg
,
D.
Winkelaar
,
E. L.
Van Der Hooft
, and
H.-J.
Kooijman
, “
DOWEC 6 MW pre-design aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS
,”
Energy Research Center of the Netherlands, Technical Report No. DOWEC 10046_009
(
2003
).
23.
Advanced Turbulent Flow Computations
, edited by
R.
Peyret
and
E.
Krause
(
Springer
,
Wien
,
2000
).
24.
F. R.
Menter
,
AIAA J.
30
,
1657
(
1992
).
25.
F. R.
Menter
,
M.
Kuntz
, and
R.
Langtry
, “
Ten years of industrial experience with SST turbulence model
,” in
Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer
, Begell House, Redding, CT (
2003
).
26.
J.
Yao
,
W.
Yuan
,
J.
Wang
,
J.
Xie
,
H.
Zhou
,
M.
Peng
, and
Y.
Sun
,
Procedia Eng.
31
,
80
(
2012
).
27.
X.
Munduate
and
E.
Ferrer
, “
CFD predictions of transition and distributed roughness over a wind turbine airfoil
,” in
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
, Orlando, Florida (
2009
).
28.
L.
Yuhong
and
L.
Congming
, “
A numerical simulation of flow around a wind turbine airfoil based on transition model
,” in
World Non-Grid-Connected Wind Power and Energy Conference
(
2009
).
29.
P. J.
Richards
and
R. P.
Hoxey
,
J. Wind Eng. Ind. Aerodyn.
46–47
,
145
(
1993
).
30.
P.
Jain
,
Wind Energy Engineering
(
McGraw Hill
,
2007
), ISBN:978-0-07-171477-8.
31.
J. M.
Jonkman
, “
Dynamics modeling and loads analysis of an offshore floating wind turbine
,” Ph.D. thesis, No. NREL/TP-500-41958 (
Department of Aerospace Engineering Sciences, University of Colorado/National Renewable Energy Laboratory
, Boulder/Golden, CO,
2007
).
You do not currently have access to this content.