Wind turbines have been used to harvest clean energy for many years. However, wind turbine simulation is extremely expensive as it requires a high computational cost. Consequently, many studies have proposed different methods to reduce the computational time of wind turbine simulation. Reduced Order Methods (ROMs) show their capability to predict the flow field in many cases but have not been applied to a Savonius wind turbine. This study is intended to utilize the Dynamic Mode Decomposition (DMD), one of the ROM models, for the first time to predict the wake of a Savonius wind turbine. In this regard, two types of predictions are conducted. First, the main variables of the flow field are calculated for interpolating the results from the numerical simulation. The results show a 52 percent reduction in the run time with a mean R2 equal to 0.95. Meanwhile, the time spent in the DMD method is negligible. Second, the first four cycles of a wind turbine are used for the prediction of the next four cycles. The findings for this case are also very accurate, and the DMD shows its ability to predict the wake of a Savonius wind turbine.

1.
M.
Masdari
,
M.
Tahani
,
M. H.
Naderi
, and
N.
Babayan
, “
Optimization of airfoil based Savonius wind turbine using coupled discrete vortex method and salp swarm algorithm
,”
J. Cleaner Prod.
222
,
47
56
(
2019
).
2.
A.
Banerjee
, “
Performance and flow analysis of an elliptic bladed Savonius-style wind turbine
,”
J. Renewable Sustainable Energy
11
,
033307
(
2019
).
3.
L.
Chen
,
J.
Chen
, and
Z.
Zhang
, “
Review of the Savonius rotor's blade profile and its performance
,”
J. Renewable Sustainable Energy
10
,
013306
(
2018
).
4.
P. K.
Talukdar
,
V.
Kulkarni
, and
U. K.
Saha
, “
Performance estimation of Savonius wind and Savonius hydrokinetic turbines under identical power input
,”
J. Renewable Sustainable Energy
10
,
064704
(
2018
).
5.
J. P.
Abraham
,
B. D.
Plourde
,
G. S.
Mowry
,
W. J.
Minkowycz
, and
E. M.
Sparrow
, “
Summary of Savonius wind turbine development and future applications for small-scale power generation
,”
J. Renewable Sustainable Energy
4
,
042703
(
2012
).
6.
B. D.
Plourde
,
J.
Abraham
,
G.
Mowry
, and
W.
Minkowycz
, “
Simulations of three-dimensional vertical-axis turbines for communications applications
,”
Wind Eng.
36
,
443
453
(
2012
).
7.
B. D.
Plourde
,
J. P.
Abraham
,
G. S.
Mowry
, and
W.
Minkowycz
, “
An experimental investigation of a large, vertical-axis wind turbine: Effects of venting and capping
,”
Wind Eng.
35
,
213
222
(
2011
).
8.
W.
Tian
,
B.
Song
, and
Z.
Mao
, “
Numerical investigation of wind turbines and turbine arrays on highways
,”
Renewable Energy
147
,
384
398
(
2020
).
9.
J. P.
Abraham
,
G. S.
Mowry
,
B. P.
Plourde
,
E. M.
Sparrow
, and
W. J.
Minkowycz
, “
Numerical simulation of fluid flow around a vertical-axis turbine
,”
J. Renewable Sustainable Energy
3
,
033109
(
2011
).
10.
B. A.
Storti
,
J. J.
Dorella
,
N. D.
Roman
,
I.
Peralta
, and
A. E.
Albanesi
, “
Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach
,”
Energy
186
,
115814
(
2019
).
11.
N.
Alom
and
U. K.
Saha
, “
Drag and lift characteristics of a novel elliptical-bladed Savonius rotor with vent augmenters
,”
J. Sol. Energy Eng.
141
,
051007
(
2019
).
12.
H.
Bai
,
C.
Chan
,
X.
Zhu
, and
K.
Li
, “
A numerical study on the performance of a Savonius-type vertical-axis wind turbine in a confined long channel
,”
Renewable Energy
139
,
102
109
(
2019
).
13.
N.
Alom
and
U. K.
Saha
, “
Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation
,”
Energy Convers. Manage.
186
,
267
277
(
2019
).
14.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
15.
M.
Liu
,
L.
Tan
, and
S.
Cao
, “
Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil
,”
Renewable Energy
139
,
214
227
(
2019
).
16.
M.
Liu
,
L.
Tan
, and
S.
Cao
, “
Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump
,”
Renewable Energy
139
,
1159
1175
(
2019
).
17.
A.
Seena
and
H.
Sung
, “
Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations
,”
Int. J. Heat Fluid Flow
32
,
1098
1110
(
2011
).
18.
A.
de Lamotte
,
A.
Delafosse
,
S.
Calvo
, and
D.
Toye
, “
Identifying dominant spatial and time characteristics of flow dynamics within free-surface baffled stirred-tanks from CFD simulations
,”
Chem. Eng. Sci.
192
,
128
142
(
2018
).
19.
K.
Saranyasoontorn
and
L.
Manuel
, “
Low-dimensional representations of wind turbine inflow turbulence and response using proper orthogonal decomposition
,” in
43rd AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics
(
AIAA
,
2005
). p.
541
551
.
20.
K.
Saranyasoontorn
and
L.
Manuel
, “
Symmetry considerations when using proper orthogonal decomposition for predicting wind turbine yaw loads
,”
J. Sol. Energy Eng.
128
,
574
579
(
2006
).
21.
Q.
Wang
,
Z.
Wang
,
J.
Song
,
Y.
Xu
, and
J.
Xu
, “
Study on a new aerodynamic model of HAWT based on panel method and reduced order model using proper orthogonal decomposition
,”
Renewable Energy
48
,
436
447
(
2012
).
22.
S. J.
Andersen
,
J. N.
Sørensen
, and
R.
Mikkelsen
, “
Simulation of the inherent turbulence and wake interaction inside an infinitely long row of wind turbines
,”
J. Turbul.
14
,
1
24
(
2013
).
23.
S. J.
Andersen
,
J. N.
Sørensen
, and
R. F.
Mikkelsen
, “
Turbulence and entrainment length scales in large wind farms
,”
Philos. Trans. R. Soc. A
375
,
20160107
(
2017
).
24.
S.
Sarmast
,
R.
Dadfar
,
R. F.
Mikkelsen
,
P.
Schlatter
,
S.
Ivanell
,
J. N.
Sørensen
, and
D. S.
Henningson
, “
Mutual inductance instability of the tip vortices behind a wind turbine
,”
J. Fluid Mech.
755
,
705
731
(
2014
).
25.
M.
Debnath
,
C.
Santoni
,
S.
Leonardi
, and
G. V.
Iungo
, “
Towards reduced order modelling for predicting the dynamics of coherent vorticity structures within wind turbine wakes
,”
Philos. Trans. R. Soc. A
375
,
20160108
(
2017
).
26.
S.
Le Clainche
and
J.
Vega
, “
Higher order dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
16
,
882
925
(
2017
).
27.
G. R.
Casado
,
V.
Beltrán
,
S.
Le Clainche
,
E.
Ferrer
, and
J.
Vega
, “
Flow structures in the turbulent wake of a cross-flow wind turbine
,” in
2018 Wind Energy Symposium
(
AIAA
,
2018
).
28.
D.
Bastine
,
B.
Witha
,
M.
Wächter
, and
J.
Peinke
, “
Towards a simplified dynamic wake model using pod analysis
,”
Energies
8
,
895
920
(
2015
).
29.
S.
Andersen
,
J.
Sørensen
, and
R.
Mikkelsen
, “
Reduced order model of the inherent turbulence of wind turbine wakes inside an infinitely long row of turbines
,” in
Journal of Physics: Conference Series
(
IOP Publishing
,
2014
). Vol. 555, p.
012005
.
30.
N.
Hamilton
,
B.
Viggiano
,
M.
Calaf
,
M.
Tutkun
, and
R.
Cal
, “
A generalized framework for reduced-order modeling of a wind turbine wake
,”
Wind Energy
21
,
373
390
(
2018
).
31.
P.-E.
Réthoré
, “
Thrust and wake of a wind turbine: Relationship and measurements
,” Ph.D. thesis (
2006
).
32.
H.
Sun
and
H.
Yang
, “
Study on an innovative three-dimensional wind turbine wake model
,”
Appl. Energy
226
,
483
493
(
2018
).
33.
S.
Naderi
,
S.
Parvanehmasiha
, and
F.
Torabi
, “
Modeling of horizontal axis wind turbine wakes in horns rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic
,”
Energy Convers. Manage.
171
,
953
968
(
2018
).
34.
E.
Tingey
and
A.
Ning
, “
Development of a parameterized reduced-order vertical-axis wind turbine wake model
,”
Wind Eng.
0
,
0309524X19849864
(
2019
).
35.
J.
Kazda
and
N.
Cutululis
, “
Fast control-oriented dynamic linear model of wind farm flow and operation
,”
Energies
11
,
3346
(
2018
).
36.
R. E.
Sheldahl
,
B. F.
Blackwell
, and
L. V.
Feltz
, “
Wind tunnel performance data for two and three bucket Savonius rotors
,”
J Energy
2
,
160
164
(
1978
).
37.
S.
Roy
and
A.
Ducoin
, “
Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine
,”
Energy Convers. Manage.
121
,
281
296
(
2016
).
38.
J.
Kutz
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2016
).
39.
J. W.
Demmel
,
Applied Numerical Linear Algebra
(
SIAM
,
1997
), Vol.
56
.
40.
N.
Demo
,
M.
Tezzele
, and
G.
Rozza
, “
PyDMD: Python dynamic mode decomposition
,”
J. Open Source Software
3
,
530
(
2018
).
You do not currently have access to this content.