The application of dynamic mode decomposition to clear-sky index forecasting of shadowing effects of convective fair-weather cumulus clouds is presented. Cloud dynamics are captured by sequences of visible-light photographic video frames. This method can be more easily applied to the modeling of cloud evolution than traditional fluid-based methods and can enhance the existing frozen-cloud advection methods. Its use is demonstrated for an actual fair-weather cumulus cloud image sequence and compared to an advection-only forecast. It is concluded that the method shows promise for very short-term clear-sky index forecasting for up to 7 minute horizons.

1.
NERC
, “
Accommodating high levels of variable generation
,”
Technical Report No. 041609
, North American Electric Reliability Corporation, Princeton, NJ,
2009
.
2.
H. T.
Pedro
and
C. F.
Coimbra
, “
Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances
,”
Renewable Energy
80
,
770
782
(
2015
).
3.
F.
Barbieri
,
S.
Rajakaruna
, and
A.
Ghosh
, “
Very short-term photovoltaic power forecasting with cloud modeling: A review
,”
Renewable Sustainable Energy Rev.
75
,
242
263
(
2017
).
4.
W.
Jewell
and
R.
Ramakumar
, “
The effects of moving clouds on electric utilities with dispersed photovoltaic generation
,”
IEEE Trans. Energy Convers.
EC-2
,
570
576
(
1987
).
5.
J. M.
Wallace
and
P. V.
Hobbs
,
Atmospheric Science: An Introductory Survey
(
Elsevier, Inc
.,
Burlington, MA
,
2006
), ISBN: 978-0-12-732951-2.
6.
R. B.
Stull
, “
A fair-weather cumulus cloud classification scheme for mixed-layer studies
,”
J. Appl. Meteorol.
24
,
49
56
(
1985
).
7.
B. A.
Wielicki
and
R. M.
Welch
, “
Cumulus cloud properties derived using landsat satellite data
,”
J. Clim. Appl. Meteorol.
25
,
261
276
(
1986
).
8.
U. of Texas Pan-American Solar Research Lab
, https://midcdmz.nrel.gov/apps/sitehome.pl?site=UTPASRL for “
Daily plots and raw data files
” (
2016
).
9.
S. N. Laboratories
, “
Performance assessment of the PNM prosperity electricity storage project,” Technical Report
, Sandia National Laboratories, Albuquerque, New Mexico,
2014
.
10.
J.
Kleissl
,
Solar Energy Forecasting and Resource Assessment
(
Academic Press
,
Oxford, UK
,
2013
), ISBN: 978-0-12-397177-7.
11.
C. W.
Chow
,
S.
Belongie
, and
J.
Kleissl
, “
Cloud motion and stability estimation for intra-hour solar forecasting
,”
Sol. Energy
115
,
645
655
(
2015
).
12.
A.
Moncada
,
W.
Richardson
, and
R.
Vega-Avila
, “
Deep learning to forecast solar irradiance using a six-month UTSA skyimager dataset
,”
Energies
11
,
1988
(
2018
).
13.
B.
Kurtz
,
F.
Mejia
, and
J.
Kleissl
, “
A virtual sky imager testbed for solar energy forecasting
,”
Sol. Energy
158
,
753
759
(
2017
).
14.
J.
John
and
D.
Anderson
,
Computational Fluid Dynamics
(
The McGraw-Hill Companies, Inc
.,
New York, NY
,
1995
), ISBN: 978-1-25-902596-9.
15.
J.
Manning
and
R.
Baldick
, “
Forecasting variability in local area photovoltaic power generation using dynamic mode decomposition
,” in
INFORMS Annual Meeting
, Phoenix, AZ (
2018
).
16.
P.
Holmes
,
J. L.
Lumley
, and
G.
Berkooz
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
New York, NY
,
1996
), ISBN: 0-521-63419-9.
17.
J.
Higham
,
C.
Keylock
, and
W.
Brevis
, “
Implications of the selection of a particular modal decomposition technique for the analysis of shallow flows
,”
J. Hydraul. Res.
56
,
796
805
(
2018
).
18.
P.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech., Cambridge Univ. Press (CUP)
656
,
5
28
(
2010
).
19.
P.
Schmid
,
L.
Li
,
M.
Juniper
, and
O.
Pust
, “
Applications of the dynamic mode decomposition
,”
Theor. Comput. Fluid Dyn.
25
,
249
259
(
2011
).
20.
C.
Rowley
,
I.
Mezic
,
S.
Bagheri
,
P.
Schlatter
, and
D.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
21.
J.
Tu
,
C.
Rowley
,
D.
Luchtenburg
,
S.
Brunton
, and
N.
Kutz
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
(
2
),
391
421
(
2014
).
22.
M. R.
Jovanovic
,
P. J.
Schmid
, and
J. W.
Nichols
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
024103
(
2014
).
23.
Q.
Zhang
,
Y.
Liu
, and
S.
Wang
, “
The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition
,”
J. Fluids Struct.
49
,
53
72
(
2014
).
24.
N.
Kutz
,
S.
Brunton
,
B.
Brunton
, and
J.
Proctor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2016
), ISBN: 978-16-1-197449-2.
25.
A. C.
Antoulas
,
Approximation of Large-Scale Dynamical Systems
(
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
,
2005
), ISBN: 0-89871-529-6.
26.
See https://zenodo.org/badge/latestdoi/204241257 for “
Cloud image data collected by author
” (
2019
).
27.
B.
Horn
and
B.
Schunck
, “
Determining optical flow
,” AI Memos (
1981
), pp.
185
203
.
28.
D.
Yang
,
J.
Kleissl
,
C. A.
Gueymard
,
H. T.
Pedro
, and
C. F.
Coimbra
, “
History and trends in solar irradiance and pv power forecasting: A preliminary assessment and review using text mining
,”
Sol. Energy
168
,
60
101
(
2018
).
29.
T.
Askham
,
P.
Zheng
,
A.
Aravkin
, and
J.
N.
Kutz
, “
Robust and scalable methods for the dynamic mode decomposition
,” preprint arXiv:1712.01883.
You do not currently have access to this content.