Analog ensemble (AnEn) is a popular probabilistic weather forecasting method based on similarity search. In that, forecasters are tasked to search for the top-m nearest neighbors (e.g., in terms of Euclidean distance) to a length-k query, from a set of historical data points in k-dimensional space. This is a straightforward yet time-consuming procedure, and few methods seem to be significantly better than a brute-force computation of all distances. To that end, I recommend using a kd-tree to perform AnEn, which appears to be one of (if not) the fastest approaches.

1.
D.
Yang
, “
A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES)
,”
J. Renewable Sustainable Energy
11
,
022701
(
2019
).
2.
D.
Yang
,
J.
Kleissl
,
C. A.
Gueymard
,
H. T.
Pedro
, and
C. F.
Coimbra
, “
History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining
,”
Sol. Energy
168
,
60
101
(
2018
).
3.
T.
Hong
,
P.
Pinson
,
S.
Fan
,
H.
Zareipour
,
A.
Troccoli
, and
R. J.
Hyndman
, “
Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond
,”
Int. J. Forecasting
32
,
896
913
(
2016
).
4.
A. H.
Murphy
, “
What is a good forecast? An essay on the nature of goodness in weather forecasting
,”
Weather Forecasting
8
,
281
293
(
1993
).
5.
D.
van der Meer
,
J.
Widén
, and
J.
Munkhammar
, “
Review on probabilistic forecasting of photovoltaic power production and electricity consumption
,”
Renewable Sustainable Energy Rev.
81
,
1484
1512
(
2018
).
6.
S.
Alessandrini
,
L. D.
Monache
,
S.
Sperati
, and
G.
Cervone
, “
An analog ensemble for short-term probabilistic solar power forecast
,”
Appl. Energy
157
,
95
110
(
2015
).
7.
S.
Alessandrini
,
L. D.
Monache
,
S.
Sperati
, and
J.
Nissen
, “
A novel application of an analog ensemble for short-term wind power forecasting
,”
Renewable Energy
76
,
768
781
(
2015
).
8.
G.
Cervone
,
L.
Clemente-Harding
,
S.
Alessandrini
, and
L. D.
Monache
, “
Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble
,”
Renewable Energy
108
,
274
286
(
2017
).
9.
E.
Vanvyve
,
L. D.
Monache
,
A. J.
Monaghan
, and
J. O.
Pinto
, “
Wind resource estimates with an analog ensemble approach
,”
Renewable Energy
74
,
761
773
(
2015
).
10.
F.
Davò
,
S.
Alessandrini
,
S.
Sperati
,
L. D.
Monache
,
D.
Airoldi
, and
M. T.
Vespucci
, “
Post-processing techniques and principal component analysis for regional wind power and solar irradiance forecasting
,”
Sol. Energy
134
,
327
338
(
2016
).
11.
D.
Yang
,
E.
Wu
, and
J.
Kleissl
, “
Operational solar forecasting for the real-time market
,”
Int. J. Forecasting
35
(
4
),
1499
1519
(
2019
).
12.
D.
Yang
and
S.
Alessandrini
, “
An ultra-fast way of searching weather analogs for renewable energy forecasting
,”
Sol. Energy
185
,
255
261
(
2019
).
13.
J. L.
Bentley
, “
Multidimensional binary search trees used for associative searching
,”
Commun. ACM
18
,
509
517
(
1975
).
14.
J. H.
Friedman
,
J. L.
Bentley
, and
R. A.
Finkel
, “
An algorithm for finding best matches in logarithmic expected time
,”
ACM Trans. Math. Software
3
,
209
226
(
1977
).
15.
D. M.
Mount
,
ANN programming manual
(
University of Maryland
,
College Park, Maryland, USA
,
2010
).
16.
H. T. C.
Pedro
,
D. P.
Larson
, and
C. F. M.
Coimbra
, “
A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods
,”
J. Renewable Sustainable Energy
11
,
036102
(
2019
).
17.
M.
Papadakis
,
M.
Tsagris
,
M.
Dimitriadis
,
S.
Fafalios
,
I.
Tsamardinos
,
M.
Fasiolo
,
G.
Borboudakis
,
J.
Burkardt
,
C.
Zou
,
K.
Lakiotaki
, and
C.
Chatzipantsiou
,
Rfast: A Collection of Efficient and Extremely Fast R Functions
(
2019
), r package version 1.9.5.
18.
M.
Tsagris
and
M.
Papadakis
, “
Taking R to its limits: 70+ tips
,”
PeerJ PrePr.
6
,
e26605v1
(
2018
).
19.
D.
Yang
, “
Ultra-fast preselection in lasso-type spatio-temporal solar forecasting problems
,”
Sol. Energy
176
,
788
796
(
2018
).

Supplementary Material

You do not currently have access to this content.