The estimation of photovoltaic (PV) efficiency depends on the solar cell temperature, which varies with ambient temperature and solar irradiation. When only daily averages are available, for instance, when assessing solar potential in a future climate, the standard procedure leads to a non-negligible error in the estimation of PV generation, as it disregards the fact that changes in efficiency at low irradiance are less relevant than changes in efficiency at high irradiance. A correction factor based on a sinusoidal model for solar irradiation and temperature is proposed and tested for locations with diverse latitudes and climates. The results show that this approach features random and bias errors below 2%, at least three times smaller than the standard averaging method, thus validating its application for estimation of PV generation.

1.
K.
Nishioka
,
T.
Hatayama
,
Y.
Uraoka
, and
T.
Fuyuki
, “
Field-test analysis of PV system output characteristics focusing on module temperature
,”
Sol. Energy Mater. Sol. Cells
75
,
665
671
(
2003
).
2.
J. S.
Griffith
,
M. S.
Rathod
, and
J.
Paslaski
, “
Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions
,” in
Proceedings of the IEEE 15th Photovoltaic Specialists Conference
(
1981
), pp.
822
830
.
3.
J.
Stultz
and
L.
Wen
, “
Thermal performance testing and analysis of photovoltaic modules in natural sunlight
,” DOE/JPL LSA Task Report No. 5101-31 (
1977
).
4.
ASTM
,
Method for Determining the Nominal Operating Cell Temperature (NOCT) of An Array or Module. E1036M, Annex A.1.
(
ASTM
,
1999
).
5.
D. C. A.
Lima
,
P. M. M.
Soares
,
A.
Semedo
, and
R. M.
Cardoso
, “
A global view of coastal low-level wind jets using an ensemble of reanalyses
,”
J. Clim.
31
(
4
),
1525
1546
(
2018
).
6.
A. F.
Prein
,
A.
Gobiet
,
H.
Truhetz
,
K.
Keuler
,
K.
Goergen
,
C.
Teichmann
,
C.
Fox Maule
,
E.
van Meijgaard
,
M.
Déqué
,
G.
Nikulin
,
R.
Vautard
,
A.
Colette
,
E.
Kjellström
, and
D.
Jacob
, “
Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits?
,”
Clim. Dyn.
46
(
1-2
),
383
412
(
2016
).
7.
M.
Iqbal
,
An Introduction to Solar Radiation
, 1st ed. (
Academic Press
,
Toronto
,
1983
).
8.
D. L.
Evans
, “
Simplified method for predicting photovoltaic array output
,”
Sol. Energy
27
(
6
),
555
560
(
1981
).
9.
M. D.
Siegel
,
S. A.
Klein
, and
W. A.
Beckman
, “
A simplified method for estimating the monthly-average performance of photovoltaic systems
,”
Sol. Energy
26
,
413
418
(
1981
).
10.
B. Y. H.
Liu
and
R. C.
Jordan
, “
The interrelationship and characteristic distribution of direct, diffuse and total solar radiation
,”
Sol. Energy
4
(
3
),
1
19
(
1960
).
11.
M.
Wann
,
D.
Yen
, and
H. J.
Gold
, “
Evaluation and calibration of three models for daily cycle of air temperature
,”
Agric. Meteorol.
34
(
2–3
),
121
128
(
1985
).
12.
Copernicus Climate Change Service (C3S)
, see https://cds.climate.copernicus.eu/cdsapp#!/home for “
ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate
, Copernicus Climate Change Service Climate Data Store (CDS),
2017
; accessed 16 Febraury 2019.
13.
M.
Kottek
,
J.
Grieser
,
C.
Beck
,
B.
Rudolf
, and
F.
Rubel
, “
World map of the Köppen-Geiger climate classification updated
,”
Meteorol. Z.
15
(
3
),
259
263
(
2006
).
14.
J.
Zhang
,
B.
Hodge
,
A.
Florita
,
S.
Lu
,
H. F.
Hamann
, and
V.
Banunarayanan
, “
Metrics for evaluating the accuracy of solar power forecasting
,” in
3rd International Workshop on Integration of Solar Power into Power Systems
(
2013
).
You do not currently have access to this content.