Solar energy is recognized as one of the most popular renewable energy sources due to its availability around the world. Because of the intermittent generation of solar power, it is vital to extract the maximum power available from solar panels all day long. For this purpose, Maximum Power Point Tracking (MPPT) techniques are investigated in several papers. In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based MPPT controller with just one current sensor has been proposed to achieve that intent. To extract the maximum power from the solar panel, a DC-AC isolated two-switch flyback inverter is connected between the solar panel and the load. To transfer the maximum power to the load, the duty cycle of this converter must be generated with the aid of the proposed ANFIS method. This ANFIS structure takes the voltage and the current of the photovoltaic (PV) module as inputs and generates the maximum power point voltage as the output. Then, with the aid of a fuzzy controller, an appropriate duty cycle will be generated to control the switches of the two-switch flyback inverter. To validate this proposed system, the MATLAB-PSIM co-simulation was done. The results prove that the proposed MPPT controller for a two-switch flyback inverter can track the maximum power under different atmospheric conditions (irradiance and temperature), as well as other advantages from our investigation.

1.
J. P.
Ram
,
T. S.
Babu
, and
N.
Rajasekar
, “
A comprehensive review on solar PV maximum power point tracking techniques
,”
Renewable Sustainable Energy Rev.
67
,
826
847
(
2017
).
2.
K.
Varesi
,
A. A.
Ghandomi
,
S. H.
Hosseini
,
M.
Sabahi
, and
E.
Babaei
, “
An improved structure for multi-input high step-up DC-DC converters
,” in
Power Electronics, Drive Systems & Technologies Conference, PEDSTC
(IEEE,
2017
), pp.
241
246
.
3.
A. R.
Reisi
,
M. H.
Moradi
, and
S.
Jamasb
, “
Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review
,”
Renewable Sustainable Energy Rev.
19
,
433
443
(
2013
).
4.
A. S.
Samosir
, “
Modeling and evaluation of solar photovoltaic emulator based on simulink model
,”
ARPN J. Eng. Appl. Sci.
10
(
2
),
10288
10295
(
2015
).
5.
R. K.
Kharb
,
S. L.
Shimi
,
S.
Chatterji
, and
M. F.
Ansari
, “
Modeling of solar PV module and maximum power point tracking using ANFIS
,”
Renewable Sustainable Energy Rev.
33
,
602
612
(
2014
).
6.
M. E.
El Telbany
,
A.
Youssef
, and
A. A.
Zekry
, “
Intelligent techniques for MPPT control in photovoltaic systems: A comprehensive review
,” in
2014-4th Artificial Intelligence with Applications in Engineering and Technology, ICAIET
(IEEE,
2014
), pp.
17
22
.
7.
A. M.
Eltamaly
,
H. M.
Farh
, and
M. F.
Othman
, “
A novel evaluation index for the photovoltaic maximum power point tracker techniques
,”
Sol. Energy
174
,
940
956
(
2018
).
8.
M. A.
Danandeh
, “
Comparative and comprehensive review of maximum power point tracking methods for PV cells
,”
Renewable Sustainable Energy Rev.
82
,
2743
2767
(
2018
).
9.
M.
Nabipour
,
M.
Razaz
,
S. G.
Seifossadat
, and
S.
Mortazavi
, “
A new MPPT scheme based on a novel fuzzy approach
,”
Renewable Sustainable Energy Rev.
74
,
1147
1169
(
2017
).
10.
M. A.
Ramli
,
S.
Twaha
,
K.
Ishaque
, and
Y. A.
Al-Turki
, “
A review on maximum power point tracking for photovoltaic systems with and without shading conditions
,”
Renewable Sustainable Energy Rev.
67
,
144
159
(
2017
).
11.
M.
Seyedmahmoudian
,
B.
Horan
,
T. K.
Soon
,
R.
Rahmani
,
A. M. T.
Oo
,
S.
Mekhilef
, and
A.
Stojcevski
, “
State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems: A review
,”
Renewable Sustainable Energy Rev.
64
,
435
455
(
2016
).
12.
S.
Messalti
,
A.
Harrag
, and
A.
Loukriz
, “
A new variable step size neural networks MPPT controller: Review, simulation, and hardware implementation
,”
Renewable Sustainable Energy Rev.
68
,
221
233
(
2017
).
13.
E.
Kandemir
,
N. S.
Cetin
, and
S.
Borekci
, “
A comprehensive overview of maximum power extraction methods for PV systems
,”
Renewable Sustainable Energy Rev.
78
,
93
112
(
2017
).
14.
A. K.
Rai
,
N. D.
Kaushika
,
B.
Singh
, and
N.
Agarwal
, “
Simulation model of ANN based maximum power point tracking controller for solar PV system
,”
Sol. Energy Mater. Sol. Cells
95
,
773
778
(
2011
).
15.
S. A.
Rizzo
and
G.
Scelba
, “
ANN based MPPT method for rapidly variable shading conditions
,”
Appl. Energy
145
,
124
132
(
2015
).
16.
P.
Yadu
,
Md.
Mohiddin
,
P.
Kumar Yadav
, and
A.
Kumar Sahu
, “
A modified MPPT technique for drift using neural networks
,” in
International Conference IV Innovations in Control
(
IEEE
,
Greater Noida, India
, August
2017
).
17.
K.
Punitha
,
D.
Devaraj
, and
S.
Sakthivel
, “
Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions
,”
Energy
62
,
330
340
(
2013
).
18.
Y. H.
Liu
,
S. C.
Wang
, and
B. R.
Peng
, “
Determining optimal membership functions of a FLC-based MPPT algorithm using the particle swarm optimization method
,” in
2016-5th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI
(IEEE,
2016
), pp.
635
640
.
19.
A.
Messai
,
A.
Mellit
,
A.
Guessoum
, and
S. A.
Kalogirou
, “
Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation
,”
Sol. Energy
85
,
265
277
(
2011
).
20.
A.
Gupta
,
Y. K.
Chauhan
, and
R. K.
Pachauri
, “
A comparative investigation of maximum power point tracking methods for solar PV system
,”
Sol. Energy
136
,
236
253
(
2016
).
21.
F.
Belhachat
and
C.
Larbes
, “
Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions
,”
Renewable Sustainable Energy Rev.
77
,
875
889
(
2017
).
22.
A.
Iqbal
,
H.
Abu-Rub
, and
S. M.
Ahmed
, “
Adaptive neuro-fuzzy inference system based maximum power point tracking of a solar PV module
,” in
2010 Energy Conference and Exhibition, EnergyCon
(IEEE,
2010
), pp.
51
56
.
23.
H.
Abu-Rub
,
A.
Iqbal
,
S. M.
Ahmed
,
F. Z.
Peng
,
Y.
Li
, and
G.
Baoming
, “
Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS
,”
IEEE Trans. Sustainable Energy
4
,
11
20
(
2013
).
24.
M.
Abdulaziz
,
S.
Aldobhani
, and
R.
John
, “
Maximum power point tracking of PV system using ANFIS prediction and fuzzy logic tracking
,” in
International Conference on Control and Automation (IAENG)
(
2008
).
25.
A. M.
Noman
,
K. E.
Addoweesh
, and
A. I.
Alolah
, “
Simulation and practical implementation of ANFIS-based MPPT method for PV applications using isolated Ćuk converter
,”
Int. J. Photoenergy
2017
,
1
15
.
26.
A. A.
Aldair
,
A. A.
Obed
, and
A. F.
Halihal
, “
Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system
,”
Renewable Sustainable Energy Rev.
82
,
2202
2217
(
2018
).
27.
M. K.
Kazimierczuk
,
Pulse-Width Modulated DC-DC Power Converters
(
John Wiley & Sons
,
2015
), p.
195
.
28.
D.
Murthy‐Bellur
and
M. K.
Kazimierczuk
, “
Two‐switch flyback PWM DC–DC converter in discontinuous‐conduction mode
,”
Int. J. Circuit Theory Appl.
39
,
1145
1160
(
2011
).
29.
F.
Karbakhsh
,
M.
Amiri
, and
H. A.
Zarchi
, “
Two switch flyback inverter employing a current sensorless MPPT and scalar control for low cost solar powered pumps
,”
IET Renewable Power Generation
11
(5),
669
677
(
2017
).
30.
M. M.
Algazar
,
H. A.
El-Halim
, and
M. E. E. K.
Salem
, “
Maximum power point tracking using fuzzy logic control
,”
Int. J. Electr. Power Energy Syst.
39
,
21
28
(
2012
).
You do not currently have access to this content.