The inclusion of renewable energies is associated with harmonic and interharmonic contamination due to the use of power inverters. Thus, several international standards have been developed to establish the admissible distortion levels associated with spectral contamination. However, these standards present limitations: interharmonics are not considered and only present limits for current signals and voltage are dismissed. This work assesses the spectral content introduced by photovoltaic generation in low voltage grids considering the existence of voltage harmonics and interharmonics. Additionally, a multiple linear regression analysis quantifies the effect of sun irradiance and photovoltaic cell temperature on harmonic and interharmonic distortion. The analysis is performed in real signals from a photovoltaic generation plant considering different weather conditions. The results prove that the spectral content in photovoltaic generation is variable throughout the day, and environmental factors can reasonably describe the behavior of harmonic and interharmonic distortion.

1.
H. A. B.
Siddique
and
R. W.
De Doncker
, “
Evaluation of DC collector-grid configurations for large photovoltaic parks
,”
IEEE Trans. Power Delivery
33
(
1
),
311
(
2018
).
2.
M.
Nurunnabi
,
N. K.
Roy
, and
H. R.
Pota
, “
Optimal sizing of grid-tied hybrid renewable energy systems considering inverter to PV ratio—A case study
,”
J. Renewable Sustainable Energy
11
,
013505
(
2019
).
3.
A.
Mellita
,
G. M.
Tina
, and
S. A.
Kalogirou
, “
Fault detection and diagnosis methods for photovoltaic systems: A review
,”
Renewable Sustainable Energy Rev.
91
,
1
(
2018
).
4.
A. D.
Martin
,
J. M.
Cano
,
J. F. A.
Silva
, and
J. R.
Vazquez
, “
Backstepping control of smart grid-connected distributed photovoltaic power supplies for telecom equipment
,”
IEEE Trans. Energy Convers.
30
(
4
),
1496
(
2015
).
5.
N.
Mithulananthan
,
T. K.
Saha
, and
A.
Chidurala
, “
Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks–learning from an urban photovoltaic network
,”
IET Renewable Power Gener.
10
(
4
),
485
(
2016
).
6.
T.
Aziz
,
M.
Ahmed
, and
N. A.
Masood
, “
Investigation of harmonic distortions in photovoltaic integrated industrial microgrid
,”
J. Renewable Sustainable Energy
10
,
053507
(
2018
).
7.
Y.
Sun
,
S.
Li
,
B.
Lin
,
X.
Fu
,
M.
Ramezani
, and
I.
Jaithwa
, “
Artificial neural network for control and grid integration of residential solar photovoltaic systems
,”
IEEE Trans. Sustainable Energy
8
(
4
),
1484
(
2017
).
8.
A.
Kalair
,
N.
Abas
,
A. R.
Kalair
,
Z.
Saleem
, and
N.
Khan
, “
Review of harmonic analysis, modeling and mitigation techniques
,”
Renewable Sustainable Energy Rev.
78
,
1152
(
2017
).
9.
P.
Gnaciński
and
M.
Pepliński
, “
Lowered voltage quality and load-carrying capacity of induction motors
,”
IET Electr. Power Appl.
10
(
9
),
843
(
2016
).
10.
IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems
(
IEEE Standard
,
2014
), p.
519
.
11.
H.
Markiewicz
and
A.
Klajn
,
Voltage Disturbances: Standard EN 50160-Voltage Characteristics in Public Distribution Systems
, Power Quality Application Guide (
Wroclaw University of Technology
,
2004
).
12.
IEC
, Electromagnetic Compatibility (EMC)-Part 3-4: Limits-Limitation of Emission of Harmonic Currents in Low-Voltage Power Supply Systems for Equipment with Rated Current Greater Than 16 A (IEC TS 61000-3-4:1998,
1998
).
13.
IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces (IEEE Standard 1547,
2018
).
14.
C.
He
,
Q.
Shu
,
T.
Liu
, and
X.
Han
, “
A time‐domain statistical approach for harmonics separation and analysis
,”
Int. Trans. Electr. Energy Syst.
27
(
1
),
e2239
(
2017
).
15.
H.
Wen
,
J.
Zhang
,
Z.
Meng
,
S.
Guo
,
F.
Li
, and
Y.
Yang
, “
Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window
,”
IEEE Trans. Ind. Inf.
11
(
1
),
16
(
2015
).
16.
S. K.
Singh
,
N.
Sinha
,
A. K.
Goswami
, and
N.
Sinha
, “
Several variants of Kalman Filter algorithm for power system harmonic estimation
,”
Int. J. Electr. Power Energy Syst.
78
,
793
(
2016
).
17.
V. K.
Tiwari
and
S. K.
Jain
, “
Hardware implementation of polyphase-decomposition-based wavelet filters for power system harmonics estimation
,”
IEEE Trans. Instrum. Meas.
65
(
7
),
1585
(
2016
).
18.
D.
Camarena-Martinez
,
M.
Valtierra-Rodriguez
,
C. A.
Perez-Ramirez
,
J. P.
Amezquita-Sanchez
,
R. D. J.
Romero-Troncoso
, and
A.
Garcia-Perez
, “
Novel downsampling empirical mode decomposition approach for power quality analysis
,”
IEEE Trans. Ind. Electron.
63
(
4
),
2369
(
2016
).
19.
A.
Elnady
,
A.
Massoud
, and
A.
Noureldin
, “
Recursive implementation of MUSIC algorithm to minimize power system disturbances
,”
Int. J. Electr. Power Energy Syst.
56
,
9
(
2014
).
20.
Y.
Terriche
,
J. M.
Guerrero
, and
J. C.
Vasquez
, “
Performance improvement of shunt active power filter based on non-linear least-square approach
,”
Electr. Power Syst. Res.
160
,
44
(
2018
).
21.
B.
Liu
,
M.
Su
,
J.
Yang
,
D.
Song
,
D.
He
, and
S.
Song
, “
Combined reactive power injection modulation and grid current distortion improvement approach for H6 transformer-less photovoltaic inverter
,”
IEEE Trans. Energy Convers.
32
(
4
),
1456
(
2017
).
22.
A.
Safa
,
E. L. M.
Berkouk
,
Y.
Messlem
, and
A.
Gouichiche
, “
A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions
,”
Int. J. Electr. Power Energy Syst.
100
,
253
(
2018
).
23.
M. S.
Mahmoud
,
N. M.
Alyazidi
, and
M. I.
Abouheaf
, “
Adaptive intelligent techniques for microgrid control systems: A survey
,”
Int. J. Electr. Power Energy Syst.
90
,
292
(
2017
).
24.
A. K.
Singh
,
I.
Hussain
, and
B.
Singh
, “
Double-stage three-phase grid-integrated solar PV system with fast zero attracting normalized least mean fourth based adaptive control
,”
IEEE Trans. Ind. Electron.
65
(
5
),
3921
(
2018
).
25.
M. A.
Memona
,
S.
Mekhilefa
,
M.
Mubina
, and
M.
Aamirb
, “
Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review
,”
Renewable Sustainable Energy Rev.
82
(
3
),
2235
(
2018
).
26.
Z.
Ahmad
and
S. N.
Singh
, “
Single phase transformerless inverter topology with reduced leakage current for grid connected photovoltaic system
,”
Electr. Power Syst. Res.
154
,
193
(
2018
).
27.
L.
Yi
,
Q.
Gui
, and
Z.
Wang
, “
A novel phase-shifted pulse width amplitude modulation for extended-boost quasi-Z source cascaded multilevel inverter based on photovoltaic power system
,”
J. Renewable Sustainable Energy
11
,
015304
(
2019
).
28.
R.
Langella
,
A.
Testa
,
J.
Meyer
,
F.
Möller
,
R.
Stiegler
, and
S. Z.
Djokic
, “
Experimental-based evaluation of PV inverter harmonic and interharmonic distortion due to different operating conditions
,”
IEEE Trans. Instrum. Meas.
65
(
10
),
2221
(
2016
).
29.
A.
Sangwongwanich
,
Y.
Yang
,
D.
Sera
,
H.
Soltani
, and
F.
Blaabjerg
, “
Analysis and modeling of interharmonics from grid-connected photovoltaic systems
,”
IEEE Trans. Power Electron.
33
(
10
),
8353
(
2018
).
30.
I. T.
Papaioannou
,
M. C.
Alexiadis
,
C. S.
Demoulias
,
D. P.
Labridis
, and
P. S.
Dokopoulos
, “
Modeling and field measurements of photovoltaic units connected to LV grid. Study of penetration scenarios
,”
IEEE Trans. Power Delivery
26
(
2
),
979
(
2011
).
31.
M. H.
Kutner
,
C. J.
Nachtsheim
,
J.
Neter
, and
W.
Li
, “
Multiple linear regression
,”
Applied Linear Statistical Models
, 5th ed. (
McGraw-Hill
,
New York
,
2003
).
32.
See http://www.ingeteam.com/Portals/0/Catalogo/Producto/Documento/PRD_1690_Archivo_ingecon-sun-power.pdf for “
Ingeteam, Ingecon Sun Power 100 Datasheet
” (last accessed February 4,
2019
).
You do not currently have access to this content.