A numerical study was performed to investigate the effects of Microvortex Generators (MVGs) on the aerodynamic performance of the NACA 0018 airfoil and an H-type Darrieus wind turbine. MVGs can delay stall, which may occur for a sustained duration during turbine operation. The flow fields around a single airfoil and the Vertical Axis Wind Turbine (VAWT) rotor are investigated. The purpose of the present work is to determine the best configuration of MVGs. In total, eight different configurations are studied. The results show that MVGs have significantly enhanced the lift of the airfoil near the stall and improve the stall margin. The improved airfoil design with MVGs installed at 20% chord length and 16° to the inlet flow with a rectangle shape has the maximum lift and stall angle. In addition, adding MVGs of the same configuration can significantly improve the power coefficient of the VAWT at a high tip speed ratio, where it typically gives low power production. The flow separation is suppressed in the azimuth angle ranging from 120° to 135°, where the power output increase is observed showing a potential impact for VAWT design.

1.
K. C.
Anup
,
J.
Whale
, and
T.
Urmee
, “
Urban wind conditions and small wind turbines in the built environment: A review
,”
Renewable Energy
131
,
268
283
(
2019
).
2.
X.
Shen
,
E.
Avital
,
G.
Paul
,
M. A.
Rezaienia
,
P.
Wen
, and
T.
Korakianitis
, “
Experimental study of surface curvature effects on aerodynamic performance of a low Reynolds number airfoil for use in small wind turbines
,”
J. Renewable Sustainable Energy
8
(
5
),
053303
(
2016
).
3.
M. M. A.
Bhutta
,
N.
Hayat
,
A. U.
Farooq
,
Z.
Ali
,
S. R.
Jamil
, and
Z.
Hussain
, “
Vertical axis wind turbine–a review of various configurations and design techniques
,”
Renewable Sustainable Energy Rev.
16
(
4
),
1926
1939
(
2012
).
4.
L.
Battisti
,
E.
Benini
,
A.
Brighenti
,
S.
Dell'Anna
, and
M. R
. Castelli
, “
Small wind turbine effectiveness in the urban environment
,”
Renewable Energy
129
,
102
113
(
2018
).
5.
H. D.
Taylor
, “
The elimination of diffuser separation by vortex generators,” Technical Report No. R-4012-3
(
United Aircraft Corporation
,
1947
).
6.
W.
Calarese
,
W. P.
Crisler
, and
G. L.
Gustsfson
, “
Afterbody drag reduction by vortexgenerators
,” in AIAA Paper No. 85-0354, AIAA 23rd Aerospace Sciences Meeting, Reno, NV, 14–17 January (
1985
).
7.
J. C.
Lin
,
S. K.
Robinson
,
R. J.
McGhee
, and
W. O.
Valarezo
, “
Separation control on high-lift airfoils via micro-vortex generators
,”
J. Aircraft
31
(
6
),
1317
1323
(
1994
).
8.
J.
Johansen
,
N. N.
Sørensen
,
M.
Reck
,
M.
Hansen
,
A.
Stuermer
,
J.
Ramboer
,
C.
Hirsch
,
J.
Ekaterinaris
,
S.
Voutsinas
, and
Y.
Perivolaris
, “
Know-blade task-3.3 report: Rotor blade computations with 3d vortex generators
,” Report No. Risø (
2005
). pp. 65.
9.
L.
Gao
,
H.
Zhang
,
Y.
Liu
, and
S.
Han
, “
Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines
,”
Renewable Energy
76
,
303
311
(
2015
).
10.
R.
J. Volino
, “
Separation control on low-pressure turbine airfoils using synthetic vortex generator jets
,”
in
ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference (American Society of Mechanical Engineers,
2003)
, pp.
845
859
.
11.
R. G.
Hibbs
,
S.
Acharya
,
Y.
Chen
,
D. E.
Nikitopoulos
, and
T. A.
Myrum
, “
Heat transfer in a two-pass internally ribbed turbine blade coolant channel with cylindrical vortex generators
,” in
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
(
American Society of Mechanical Engineers
,
1996
)
, p. V004T09A051
.
12.
A.
Heffron
,
J. J. R.
Williams
, and
E.
Avital
, “
Numerical and experimental study of microvortex generators
,”
AIAA J. Aircraft
55
(
6
),
2256
2266
(
2018
).
13.
V.
Yashodhar
,
G.
Humrutha
,
M.
Kaushik
, and
S.
Khan
, “
CFD studies on triangular micro-vortex generators in flow control
,” in IOP Conference Series: Materials Science and Engineering (
2017
), Vol.
184
, p.
012007
.
14.
T.
Paiboolsirichit
, “
3D simulation of wing fitted with vortex generators
,” in 2016 Second Asian Conference on Defence Technology (ACDT) (
2016
).
15.
R.
Barrett
and
S.
Farokhi
, “
Subsonic aerodynamics and performance of a smart vortex generator system
,”
J. Aircraft
33
(
2
),
393
398
(
1996
).
16.
M.
Chavez
,
S.
Sanvido
,
O. M. F.
Browne
, and
E.
Valero
, “
Numerical and parametric study of MVGs on a UAV geometry in subsonic flow
,” in Computational Methods in Applied Sciences (
2017
), pp.
207
222
.
17.
T. K.
Zhen
,
M.
Zubair
, and
K. A.
Ahmad
, “
Experimental and numerical investigation of the effects of passive vortex generators on Aludra UAV performance
,”
Chin. J. Aeronaut.
24
(
5
),
577
583
(
2011
).
18.
F. K.
Lu
,
Q.
Li
, and
C.
Liu
, “
Microvortex generators in high-speed flow
,”
Prog. Aerosp. Sci.
53
,
30
45
(
2012
).
19.
F.
Menter, “
Zonal two equation kw turbulence models for aerodynamic flows
,” in 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference (
1993
), p.
2906
.
20.
H.
Mueller-Vahl
,
G.
Pechlivanoglou
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Vortex generators for wind turbine blades: A combined wind tunnel and wind turbine parametric study
,”
Am. Soc. Mech. Eng.
6,
899
914
, (
2012
).
21.
P. R.
Ashill
,
G. L.
Riddle
, and
M. J.
Stanley
, “
Control of three-dimensional separation on highly swept wings
,” in ICAS-94-4.6.2 September (
1994
).
22.
D. C.
Wilcox
, “
Multiscale model for turbulent flows
,”
AIAA
26
(
11
),
1311
1320
(
1988
).
23.
F. R.
Menter
, “
Improved two-equation k-omega turbulence models for aerodynamic flows
,” NASA Technical Memorandum TM-103975. Technical report, NASA, Ames, CA, 1992.
24.
A. Aspden, et al., "Analysis of implicit LES methods," Communications in Applied Mathematics and Computational Science (Springer, 2009), Vol. 3.1, pp.
103
126
.
25.
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
, “
A rationale for implicit LES
,” in
Implicit Large Eddy Simulation
(Cambridge University Press, Cambridge, 2007), pp.
39
58
.
26.
C.
Yao
,
J.
Lin
, and
B.
Allen
, “
Flowfield measurement of device-induced embedded streamwise vortex on a flat plate
,” in 1st Flow Control Conference (
2002
), p.
3162
.
27.
R. E.
Sheldahl
and
P. C.
Klimas
, “
Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines,” Technical Report No. SAND-80-2114. (Sandia National Labs., Albuquerque, NM, USA
,
1981
).
28.
O. M.
Fouatih
,
M.
Medale
,
O.
Imine
, and
B.
Imine
, “
Design optimization of the aerodynamic passive flow control on NACA 4415 airfoil using vortex generators
,”
Eur. J. Mech.
56
,
82
96
(
2016
)..
29.
F.
Balduzzi
,
A.
Bianchini
,
R.
Maleci
,
G.
Ferrara
, and
L.
Ferrari
, “
Critical issues in the CFD simulation of Darrieus wind turbines
,”
Renewable Energy
85
,
419
435
(
2016
).
You do not currently have access to this content.