We introduce a simple and novel technique to extract dynamic features from sky images in order to increase the accuracy of intrahour forecasts for both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) values. The proposed methodology is based on a block-matching algorithm that correctly identifies the bulk motion of clouds relative to the position of the Sun in the sky. Adaptive rectangular- and wedge-shaped Regions Of Interest are used to select the image pixels for the new features. The results show an average increase of 6.8% (6.7%) in forecast skill for GHI (DNI) across all horizons tested as measured against a model with global (nonadaptive) image features. Relative to clear-sky persistence, the new model achieves skills ranging from 20% to 30% (22%–35%) for GHI (DNI), among the highest ever reported for these time horizons. An analysis based on Mutual Information and Pearson correlation coefficients between the image features and the training data reveals overall improvements in all metrics. The proposed adaptive method also improves the predictability of the ramp magnitude and direction.

1.
L.
Fara
,
B.
Bartok
,
A.
Galbeaza Moraru
,
C.
Oprea
,
P.
Sterian
,
A.
Diaconu
, and
S.
Fara
,
J. Renewable Sustainable Energy
5
,
041821
(
2013
).
2.
R. H.
Inman
,
H. T.
Pedro
, and
C. F. M.
Coimbra
,
Prog. Energy Combust. Sci.
39
,
535
(
2013
).
3.
R.
Marquez
,
V. G.
Gueorguiev
, and
C. F. M.
Coimbra
,
J. Sol. Energy Eng.
135
,
011017
(
2012
).
4.
C.
Voyant
,
G.
Notton
,
S.
Kalogirou
,
M.-L.
Nivet
,
C.
Paoli
,
F.
Motte
, and
A.
Fouilloy
,
Renewable Energy
105
,
569
(
2017
).
5.
J.
Antonanzas
,
N.
Osorio
,
R.
Escobar
,
R.
Urraca
,
F. J.
Martinez-de Pison
, and
F.
Antonanzas-Torres
,
Sol. Energy
136
,
78
(
2016
).
6.
H. T. C.
Pedro
and
C. F. M.
Coimbra
,
Renewable Energy
80
,
770
(
2015
).
7.
H. T. C.
Pedro
,
C. F. M.
Coimbra
,
M.
David
, and
P.
Lauret
,
Renewable Energy
123
,
191
(
2018
).
8.
C. W.
Chow
,
S.
Belongie
, and
J.
Kleissl
,
Sol. Energy
115
,
645
(
2015
).
9.
Y.
Chu
,
H. T. C.
Pedro
,
L.
Nonnenmacher
,
R. H.
Inman
,
Z.
Liao
, and
C. F. M.
Coimbra
,
J. Atmos. Oceanic Technol.
31
,
1995
(
2014
).
10.
Y.
Chu
,
H. T. C.
Pedro
,
M.
Li
, and
C. F. M.
Coimbra
,
Sol. Energy
114
,
91
(
2015
).
11.
S.
Quesada-Ruiz
,
Y.
Chu
,
J.
Tovar-Pescador
,
H. T. C.
Pedro
, and
C. F. M.
Coimbra
,
Sol. Energy
102
,
267
(
2014
).
12.
M. S.
Ghonima
,
B.
Urquhart
,
C. W.
Chow
,
J. E.
Shields
,
A.
Cazorla
, and
J.
Kleissl
,
Atmos. Meas. Tech.
5
,
4535
(
2012
).
13.
G.
Wang
,
B.
Kurtz
, and
J.
Kleissl
,
Sol. Energy
131
,
208
(
2016
).
14.
D. R.
Myers
,
Reliability of Photovoltaic Cells, Modules, Components, and Systems III
(
International Society for Optics and Photonics
,
2010
), Vol.
7773
, p.
77730G
.
15.
S.
Cros
,
N.
Sébastien
,
O.
Liandrat
, and
N.
Schmutz
,
Remote Sensing of Clouds and the Atmosphere XIX; and Optics in Atmospheric Propagation and Adaptive Systems XVII
(
International Society for Optics and Photonics
,
2014
), Vol.
9242
, p.
924202
.
16.
Y.
Dazhi
,
W. M.
Walsh
,
D.
Zibo
,
P.
Jirutitijaroen
, and
T. G.
Reindl
,
Energy Procedia
33
,
335
(
2013
).
17.
P.
Ineichen
,
Sol. Energy
82
,
758
(
2008
).
18.
T.
Chen
and
C.
Guestrin
, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD '16 (
ACM
,
New York, NY, USA
,
2016
), pp.
785
794
.
19.
J. R.
Vergara
and
P. A.
Estévez
,
Neural Comput. Appl.
24
,
175
(
2014
).
20.
H.
Bouzgou
and
C. A.
Gueymard
,
Renewable Energy
133
,
1055
(
2019
).
21.
J.
Friedman
,
T.
Hastie
, and
R.
Tibshirani
,
The Elements of Statistical Learning
(
Springer series in statistics
,
New York, NY, USA
,
2001
), Vol.
10
.
22.
J.
Zhang
,
A.
Florita
,
B.-M.
Hodge
,
S.
Lu
,
H. F.
Hamann
,
V.
Banunarayanan
, and
A. M.
Brockway
,
Sol. Energy
111
,
157
(
2015
).
23.
L.
Vallance
,
B.
Charbonnier
,
N.
Paul
,
S.
Dubost
, and
P.
Blanc
,
Sol. Energy
150
,
408
(
2017
).
24.
C. J.
Willmott
,
K.
Matsuura
, and
S. M.
Robeson
,
Atmos. Environ.
43
,
749
(
2009
).
You do not currently have access to this content.