The Engerer2 separation model estimates the diffuse fraction Kd from inputs of global horizontal irradiance, UTC time, latitude, and longitude. The model was initially parameterized and validated on 1-min resolution data for Australia and performed best out of the 140 models in global validation studies. This research reparameterizes Engerer2 on a global training dataset and at many common temporal resolutions (1-min, 5-min, 10-min, 15-min, 30-min, 1-h, and 1-day), so that it may be more easily implemented in the future; the need for the user to perform prerequisite calculations of solar angles and clear-sky irradiance has also been removed for ease of use. Comparing the results of the new 1-min parameterization against the original Engerer2 parameterization on a global testing dataset, the root mean squared error (RMSE) improves from 0.168 to 0.138, the relative RMSE from 30.4% to 25.1%, the mean bias error from 8.01% to –0.30%, and the coefficient of determination (R2) from 0.80 to 0.86; hence, there is a significant improvement to the model. Engerer2 was unsuited to 1-day averages; however, it performed remarkably well at all other averaging periods. A climate specific analysis found poor suitability of Engerer2 in polar climates; however, improvement and suitability were found for all other climates and temporal averaging periods. Code for the model are provided as supplementary material in languages R, Python, and Matlab®—selected for their wide-adoption in academia and industry—and they can also be found in the Github repository: Engerer2-separation-model.

1.
J. M.
Bright
,
Engerer2 Separation Model GitHub Repository
(
GitHub
,
2019
). see https://github.com/JamieMBright/Engerer2-separation-model.
2.
N. A.
Engerer
, “
Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia
,”
Sol. Energy
116
,
215
237
(
2015
).
3.
S.
Killinger
,
F.
Braam
,
B.
Muller
,
B.
Wille-Haussmann
, and
R.
McKenna
, “
Projection of power generation between differently-oriented PV systems
,”
Sol. Energy
136
,
153
165
(
2016
).
4.
S.
Killinger
,
B.
Muller
,
Y. M.
Saint-Drenan
, and
R.
McKenna
, “
Towards an improved nowcasting method by evaluating power profiles of PV systems to detect apparently atypical behavior
,” in
Conference Record of the IEEE Photovoltaic Specialists Conference
, November (
2016
), pp.
980
985
.
5.
Y.-M.
Saint-Drenan
,
L.
Wald
,
T.
Ranchin
,
L.
Dubus
, and
A.
Troccoli
, “
An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data
,”
Adv. Sci. Res.
15
,
51
62
(
2018
).
6.
S.
Killinger
,
N.
Engerer
, and
B.
Müller
, “
QCPV: A quality control algorithm for distributed photovoltaic array power output
,”
Sol. Energy
143
,
120
131
(
2017
).
7.
S.
Killinger
,
J. M.
Bright
,
D.
Lingfors
, and
N. A.
Engerer
, “
A tuning routine to correct systematic influences in reference PV systems' power outputs
,”
Sol. Energy
157
,
1082
1094
(
2017
).
8.
S.
Killinger
,
P.
Guthke
,
A.
Semmig
,
B.
Müller
,
B.
Wille-Haussmann
, and
W.
Fichtner
, “
Upscaling PV power considering module orientations
,”
IEEE J. Photovoltaics
7
,
941
944
(
2017
).
9.
H.
Ruf
,
M.
Schroedter-Homscheidt
,
G.
Heilscher
, and
H. G.
Beyer
, “
Quantifying residential PV feed-in power in low voltage grids based on satellite-derived irradiance data with application to power flow calculations
,”
Sol. Energy
135
,
692
702
(
2016
).
10.
Y.-M.
Saint-Drenan
,
S.
Bofinger
,
K.
Rohrig
, and
B.
Ernst
, “
Regional nowcasting of the solar power production with PV-plant measurements and satellite images
,” in
Proceedings of the ISES Solar World Congress
(
2011
), pp.
1
11
.
11.
N. A.
Engerer
,
J. M.
Bright
, and
S.
Killinger
, “
Himawari 8 enabled real-time distributed PV simulations for distribution networks
,” in
PVSC44
, Washington D.C. (
2017
).
12.
J. M.
Bright
,
S.
Killinger
,
D.
Lingfors
, and
N. A.
Engerer
, “
Improved satellite-derived PV power nowcasting using real-time power data from reference PV systems
,”
J. Sol. Energy
168
,
118
139
(
2018
).
13.
J.
Polo
,
F.
Antonanzas-Torres
,
J. M.
Vindel
, and
L.
Ramirez
, “
Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models
,”
Renewable Energy
68
,
785
792
(
2014
).
14.
J.
Polo
,
S.
Wilbert
,
J. A.
Ruiz-Arias
,
R.
Meyer
,
C.
Gueymard
,
M.
Súri
,
L.
Martín
,
T.
Mieslinger
,
P.
Blanc
,
I.
Grant
,
J.
Boland
,
P.
Ineichen
,
J.
Remund
,
R.
Escobar
,
A.
Troccoli
,
M.
Sengupta
,
K. P.
Nielsen
,
D.
Renne
,
N.
Geuder
, and
T.
Cebecauer
, “
Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets
,”
Sol. Energy
132
,
25
37
(
2016
).
15.
M.
Jazayeri
,
K.
Jazayeri
, and
S.
Uysal
, “
Generation of spatially dispersed irradiance time-series based on real cloud patterns
,”
Sol. Energy
158
,
977
994
(
2017
).
16.
D.
Lingfors
,
S.
Killinger
,
N. A.
Engerer
,
J.
Widén
, and
J. M.
Bright
, “
Cross-validation of PV shading identification with a LiDAR building classification and solar resource assessment model
,”
Sol. Energy
205,
1216
1230
(
2017
).
17.
B. Y.
Liu
and
R. C.
Jordan
, “
The interrelationship and characteristic distribution of direct, diffuse and total solar radiation
,”
Sol. Energy
4
,
1
19
(
1960
).
18.
J.
Orgill
and
K.
Hollands
, “
Correlation equation for hourly diffuse radiation on a horizontal surface
,”
Sol. Energy
19
,
357
359
(
1977
).
19.
J.
Bugler
, “
The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation
,”
Sol. Energy
19
,
477
491
(
1977
).
20.
E. C.
Boes
, “
Insolation modeling overview
,”
Energy
4
,
523
529
(
1979
).
21.
M.
Iqbal
, “
Prediction of hourly diffuse solar radiation from measured hourly global radiation on a horizontal surface
,”
Sol. Energy
24
,
491
503
(
1980
).
22.
D.
Erbs
,
S.
Klein
, and
J.
Duffie
, “
Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation
,”
Sol. Energy
28
,
293
302
(
1982
).
23.
J.
Spencer
, “
A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation
,”
Sol. Energy
29
,
19
32
(
1982
).
24.
M. N. A.
Hawlader
, “
Diffuse, global and extra-terrestrial solar radiation for Singapore
,”
Int. J. Ambient Energy
5
,
31
38
(
1984
).
25.
C.
Spitters
,
H.
Toussaint
, and
J.
Goudriaan
, “
Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part I. Components of incoming radiation
,”
Agric. Forest Meteorol.
38
,
217
229
(
1986
).
26.
F.
Vignola
and
D.
McDaniels
, “
Beam-global correlations in the Pacific Northwest
,”
Sol. Energy
36
,
409
418
(
1986
).
27.
A.
Skartveit
and
J. A.
Olseth
, “
A model for the diffuse fraction of hourly global radiation
,”
Sol. Energy
38
,
271
274
(
1987
).
28.
D. T.
Reindl
,
W. A.
Beckman
, and
J. A.
Duffie
, “
Diffuse fraction correlations
,”
Sol. Energy
45
,
1
7
(
1990
).
29.
D. T.
Reindl
,
W. A.
Beckman
, and
J. A.
Duffie
, “
Evaluation of hourly tilted surface radiation models
,”
Sol. Energy
45
,
9
17
(
1990
).
30.
M.
Vazquez
,
V.
Ruiz
, and
R.
Perez
, “
The roles of scattering, absorption, and air mass on the diffuse-to-global correlations
,”
Sol. Energy
47
,
181
188
(
1991
).
31.
R.
Perez
,
R.
Seal
,
E.
Maxwell
, and
A.
Zalenka
, “
Dynamic global-to-direct irradiance conversion models
,”
ASHRAE Trans.
98
,
354
369
(
1992
), see https://archive-ouverte.unige.ch/unige:38583.
32.
J.
Chandrasekaran
and
S.
Kumar
, “
Hourly diffuse fraction correlation at a tropical location
,”
Sol. Energy
53
,
505
510
(
1994
).
33.
J. C.
Lam
and
D. H.
Li
, “
Correlation between global solar radiation and its direct and diffuse components
,”
Build. Environ.
31
,
527
535
(
1996
).
34.
J.
Boland
,
L.
Scott
, and
M.
Luther
, “
Modelling the diffuse fraction of global solar radiation on a horizontal surface
,”
Environmetrics
12
,
103
116
(
2001
).
35.
A.
de Miguel
,
J.
Bilbao
,
R.
Aguiar
,
H.
Kambezidis
, and
E.
Negro
, “
Diffuse solar irradiation model evaluation in the North Mediterranean Belt area
,”
Sol. Energy
70
,
143
153
(
2001
).
36.
A. P.
Oliveira
,
J. F.
Escobedo
,
A. J.
Machado
, and
J.
Soares
, “
Correlation models of diffuse solar-radiation applied to the city of São Paulo, Brazil
,”
Appl. Energy
71
,
59
73
(
2002
).
37.
S.
Karatasou
,
M.
Santamouris
, and
V.
Geros
, “
Analysis of experimental data on diffuse solar radiation in Athens, Greece, for building applications
,”
Int. J. Sustainable Energy
23
,
1
11
(
2003
).
38.
T.
Muneer
and
S.
Munawwar
, “
Improved accuracy models for hourly diffuse solar radiation
,”
J. Sol. Energy Eng.
128
,
104
(
2006
).
39.
C. P.
Jacovides
,
F. S.
Tymvios
,
V. D.
Assimakopoulos
, and
N. A.
Kaltsounides
, “
Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation
,”
Renewable Energy
31
,
2492
2504
(
2006
).
40.
P.
Ineichen
, “
Comparison and validation of three global-to-beam irradiance models against ground measurements
,”
Sol. Energy
82
,
501
512
(
2008
).
41.
J.
Boland
,
B.
Ridley
, and
B.
Brown
, “
Models of diffuse solar radiation
,”
Renewable Energy
33
,
575
584
(
2008
).
42.
R.
Posadillo
and
R.
López Luque
, “
Hourly distributions of the diffuse fraction of global solar irradiation in Córdoba (Spain)
,”
Energy Convers. Manage.
50
,
223
231
(
2009
).
43.
C. A.
Gueymard
, “
Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications
,”
Sol. Energy
83
,
432
444
(
2009
).
44.
B.
Ridley
,
J.
Boland
, and
P.
Lauret
, “
Modelling of diffuse solar fraction with multiple predictors
,”
Renewable Energy
35
,
478
483
(
2010
).
45.
J.
Ruiz-Arias
,
H.
Alsamamra
,
J.
Tovar-Pescador
, and
D.
Pozo-Vázquez
, “
Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions
,”
Energy Convers. Manage.
51
,
881
893
(
2010
).
46.
C. A.
Gueymard
, “
Progress in direct irradiance modeling and validation
,” in
Solar Conference 2010
(
American Solar Energy Society
, Phoenix, AZ,
2010
), pp.
1
8
.
47.
S.
Dervishi
and
A.
Mahdavi
, “
Computing diffuse fraction of global horizontal solar radiation: A model comparison
,”
Sol. Energy
86
,
1796
1802
(
2012
).
48.
B.
Marion
, “
A model for deriving the direct normal and diffuse horizontal irradiance from the global tilted irradiance
,”
Sol. Energy
122
,
1037
1046
(
2015
).
49.
R.
Tapakis
,
S.
Michaelides
, and
A.
Charalambides
, “
Computations of diffuse fraction of global irradiance: Part 1–Analytical modelling
,”
Sol. Energy
139
,
711
722
(
2016
).
50.
C. A.
Gueymard
and
J. A.
Ruiz-Arias
, “
Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance
,”
Sol. Energy
128
,
1
30
(
2016
).
51.
R.
Aler
,
I. M.
Galván
,
J. A.
Ruiz-Arias
, and
C. A.
Gueymard
, “
Improving the separation of direct and diffuse solar radiation components using machine learning by gradient boosting
,”
Sol. Energy
150
,
558
569
(
2017
).
52.
D.
Yang
and
J.
Boland
, “
Satellite-augmented diffuse solar radiation separation models
,”
J. Renewable Sustainable Energy
11
,
023705
(
2019
).
53.
C. K.
Kim
,
H—G.
Kim
,
Y—H.
Kang
,
C—Y.
Yun
, and
S. Y.
Kim
, “
Probabilistic prediction of direct normal irradiance derived from global horizontal irradiance over the Korean Peninsula by using Monte-Carlo simulation
,”
Sol. Energy
180
,
63
74
(
2019
).
54.
R.
García
,
N.
Alvarado
,
J.
Boland
,
R.
Escobar
, and
A.
Castillejo-cuberos
, “
Diffuse fraction estimation using the BRL model and relationship of predictors under Chilean, Costa Rican and Australian climatic conditions
,”
Renewable Energy
136
,
1091
1106
(
2019
).
55.
E.
Paulescu
and
R.
Blaga
, “
A simple and reliable empirical model with two predictors for estimating 1-minute diffuse fraction
,”
Sol. Energy
180
,
75
84
(
2019
).
56.
A. R.
Starke
,
L. F.
Lemos
,
J.
Boland
,
J. M.
Cardemil
, and
S.
Colle
, “
Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction
,”
Renewable Energy
125
,
472
484
(
2018
).
57.
J. M.
Bright
, “
The impact of globally diverse GHI training data: evaluation through application
,”
Renewable Sustainable Energy
11
,
023703
(
2019
).
58.
J.
Michalsky
,
E.
Dutton
,
M.
Rubes
,
D.
Nelson
,
T.
Stoffel
,
M.
Wesley
,
M.
Splitt
, and
J.
DeLuisi
, “
Optimal measurement of surface shortwave irradiance using current instrumentation
,”
J. Atmos. Oceanic Technol.
16
,
55
69
(
1999
).
59.
C. A.
Gueymard
and
D. R.
Myers
, “
Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling
,”
Sol. Energy
83
,
171
185
(
2009
).
60.
WRMC-BSRN
,
World Radiation Monitoring Center-Baseline Surface Radiation Network
,
PANGEA—Data Publisher for Earth and Environmental Science
(
WRMC-BSRN
,
2018
).
61.
M.
Al-Rasheedi
,
C. A.
Gueymard
,
A.
Ismail
, and
S. A.
Hajraf
, “
Solar resource assessment over Kuwait: Validation of satellite-derived data and reanalysis modeling
,” in
Proceedings of EuroSun ISES Conference
, Aix-les-Bains, France,
2014
.
62.
C. A.
Gueymard
,
M.
Al-rasheedi
,
A.
Ismail
, and
T.
Hussain
, “
Long-term variability of aerosol optical depth, dust episodes, and direct normal irradiance over Kuwait for CSP applications
,” in
ISES Solar World Congress 2017 IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry
, Abu Dhabi, UAE, October
2017
.
63.
C. A.
Gueymard
, “
Validation of real-time solar irradiance simulations over Kuwait using WRF-solar
,” in
12th International Conference on Solar Energy for Buildings and Industry
, EuroSun2018, Rapperswil, Switzerland,
2018
.
64.
C. N.
Long
and
Y.
Shi
, “
The QCRad value added product: Surface radiation measurement quality control testing, including climatology configurable limits
,” Technical Report No. DOE/SC-ARM/TR-074 (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research,
2006
).
65.
K.-N.
Liou
,
An Introduction to Atmospheric Radiation
, 2nd ed. (
Elsevier Science
,
2002
), p.
49
.
66.
C. A.
Gueymard
, “
A reevaluation of the solar constant based on a 42-year total solar irradiance time series and a reconciliation of spaceborne observations
,”
Sol. Energy
168
,
2
9
(
2018
).
67.
X.
Sun
,
J. M.
Bright
,
C. A.
Gueymard
,
B.
Acord
,
P.
Wang
, and
A.
Nicholas
, “
Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis
,”
Renewable Sustainable Energy Rev.
111
,
550
570
(
2019
).
68.
C. A.
Gueymard
, “
Clear-sky radiation models and aerosol effects
,” in
Solar Resources Mapping: Fundamentals and Applications
, 1st ed., edited by
J. P.
Martinez
,
L.
Martín Pomares
, and
A.
Sanfilippo
(
Springer International Publishing
,
2019
), Chap. 5.
69.
C. A.
Gueymard
, “
REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—Validation with a benchmark dataset
,”
Sol. Energy
82
,
272
285
(
2008
).
70.
C.
Rigollier
,
O.
Bauer
, and
L.
Wald
, “
On the clear sky model of the ESRA—European Solar Radiation Atlas—with respect to the HELIOSAT method
,”
Sol. Energy
68
,
33
48
(
2000
).
71.
R.
Perez
,
P.
Ineichen
,
K.
Moore
,
M.
Kmiecik
,
C.
Chain
,
R.
George
, and
F.
Vignola
, “
A new operational model for satellite-derived irradiances: Description and validation
,”
Sol. Energy
73
,
307
317
(
2002
).
72.
C. A.
Gueymard
, “
Clear-sky irradiance predictions for solar resource mapping and large-scale applications: Improved validation methodology and detailed performance analysis of 18 broadband radiative models
,”
Sol. Energy
86
,
2145
2169
(
2012
).
73.
H. C.
Hottel
, “
A simple model for estimating the transmittance of direct solar radiation through clear atmospheres
,”
Sol. Energy
18
,
129
134
(
1976
).
74.
A.
Biga
and
R.
Rosa
, “
Contribution to the study of the solar radiation climate of Lisbon
,”
Sol. Energy
23
,
61
67
(
1979
).
75.
C. A.
Gueymard
,
J. M.
Bright
,
D.
Lingfors
,
A.
Habte
, and
M.
Sengupta
, “
A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers
,”
Renewable Sustainable Energy Rev.
109
,
412
427
(
2019
).
76.
J.
Threlkeld
and
R. C. Jordan,
Direct solar radiation available on clear days
,”
Heat. Piping Air Cond.
29
,
135
(
1958
), see https://www.osti.gov/biblio/5249365.
77.
Matlab
, “
Find minimum of unconstrained multivariable function using derivative-free method
,” in
MATLAB fminsearch
(
MathWorks
,
Australia
,
2018
), see https://www.mathworks.com/help/matlab/ref/fminsearch.html.
78.
J. C.
Lagarias
,
J. A.
Reeds
,
M. H.
Wright
, and
P. E.
Wright
, “
Convergence properties of the Nelder–Mead simplex method in low dimensions
,”
SIAM J. Optim.
9
,
112
147
(
1998
).

Supplementary Material

You do not currently have access to this content.