This work aims to design and evaluate the performance of a Hybrid Renewable Energy System (HRES) for the newly proposed grand city NEOM in Saudi Arabia. The average value of wind speed and Global Horizontal Irradiance at the proposed location are 4.86 m/s and 6.43 kWh/m2 per day, respectively. The various mixtures and sizes of photovoltaic (PV) arrays, wind turbines, power converters, diesel generators, and batteries are evaluated to find out the optimal system configuration to meet the required peak load of 1353 kW. The recommended HRES is optimized for the minimum net present cost (NPC). The electrical power, economic, and greenhouse gas emission analyses of the optimized HRES architecture are performed. Finally, a detailed sensitivity analysis is carried out to determine the impact of uncertainties in diesel cost and renewable resource variations on various system architectures, NPC, and CO2 emissions. The optimal system consists of two generators 500 kW and 1 MW, one V82 wind turbine (1.65 MW), a 100 kW PV, a 200 kW converter, and 100 batteries. The NPC of the optimal HRES is US$8.13 million, which is US$0.6 million less than the NPC of the diesel-only system. The cost of energy of the proposed HRES is found to be 0.164 US$/kWh as compared to 0.176 US$/kWh from the diesel-only system. Emission analysis shows a 46.5% reduction in CO2 emissions.

1.
S.
Munawwar
and
H.
Ghedira
, “
A review of renewable energy and solar industry growth in the GCC region
,”
Energy Procedia
57
,
3191
3202
(
2014
).
2.
K.
Ark
,
K.
Sundareswaran
, and
P. R.
Venkateswaran
, “
Performance study on a grid connected 20 kW p solar photovoltaic installation in an industry in Tiruchirappalli (India)
,”
Energy Sustainable Dev.
23
,
294
304
(
2014
).
3.
W. E.
Council
,
Average Electricity Consumption Per Electrified Household. Energy Efficiency Indicators
(
World Energy Council
,
2017
).
4.
W.
Matar
, “
A look at the response of households to time-of-use electricity pricing in Saudi Arabia and its impact on the wider economy
,”
Energy Strategy Rev.
16
,
13
23
(
2017
).
5.
K.
Alkhathlan
and
M.
Javid
, “
Carbon emissions and oil consumption in Saudi Arabia
,”
Renewable Sustainable Energy Rev.
48
,
105
111
(
2015
).
6.
A. S.
Alshehry
and
M.
Belloumi
, “
Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia
,”
Renewable Sustainable Energy Rev.
41
,
237
247
(
2015
).
7.
S. M.
Rahman
and
A. N.
Khondaker
, “
Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia
,”
Renewable Sustainable Energy Rev.
16
,
2446
2460
(
2012
).
8.
E.C.R.A, Electricity and Cogeneration Regulatory
, see http://www.ecra.gov.sa/en-us/DataAndStatistics/NationalRecord/pages/NationalRecord.aspx for electricity demand growth rate; accessed April 10, 2018 (
2017
).
9.
U. S. Energy Information Administration
, see http://www.eia.gov/beta/international/analysis_includes/countries_long/Saudi_Arabia/saudi_arabia.pdf for Country Analysis Brief : Saudi Arabia; accessed April 15, 2018 (
2014
), pp.
1
19
.
10.
D.
Saygin
,
R.
Kempener
,
N.
Wagner
,
M.
Ayuso
, and
D.
Gielen
, “
The Implications for renewable energy innovation of doubling the share of renewables in the global energy mix between 2010 and 2030
,”
Energies
8
,
5828
5865
(
2015
).
11.
M.
Belloumi
and
A.
Alshehry
, “
Sustainable energy development in Saudi Arabia
,”
Sustainability
7
,
5153
5170
(
2015
).
12.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
, “
Renewable energy resources: Current status, future prospects and their enabling technology
,”
Renewable Sustainable Energy Rev.
39
,
748
764
(
2014
).
13.
J.
Lilliestam
and
A.
Patt
, “
Barriers, risks and policies for renewables in the Gulf states
,”
Energies
8
,
8263
8285
(
2015
).
14.
N. A.
Khan
,
A. B.
Awan
,
A.
Mahmood
,
S.
Razzaq
,
A.
Zafar
, and
G. A. S.
Sidhu
, “
Combined emission economic dispatch of power system including solar photo voltaic generation
,”
Energy Convers. Manage.
92
,
82
91
(
2015
).
15.
A. B.
Awan
and
Z. A.
Khan
, “
Recent progress in renewable energy - Remedy of energy crisis in Pakistan
,”
Renewable Sustainable Energy Rev.
33
,
236
253
(
2014
).
16.
M. A. M.
Ramli
,
S.
Twaha
, and
Z.
Al-Hamouz
, “
Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources
,”
Renewable Sustainable Energy Rev.
70
,
287
297
(
2017
).
17.
M.
Zubair
,
A. B.
Awan
, and
P.
RP
, “
Analysis of photovoltaic arrays efficiency for reduction of building cooling load in hot climates
,”
Build. Serv. Eng. Res. Technol.
39
,
733
748
(
2018
).
18.
See http://vision2030.gov.sa/en/node/87 for A Renewable Energy Market, Saudi Arabia Vision 2030; accessed July 10, 2018 (
2017
).
19.
K. A.
Care
, https://rratlas.kacare.gov.sa for Renewable Resource Monitoring and Mapping (RRMM) Network.
20.
A. B.
Awan
,
M.
Zubair
,
R. P.
Praveen
, and
A. G.
Abukhalil
, “
Solar energy resource analysis and evaluation of photovoltaic system performance in various regions of Saudi Arabia
,”
Sustainability
10
,
1
27
(
2018
).
21.
K.
Shivarama Krishna
and
K.
Sathish Kumar
, “
A review on hybrid renewable energy systems
,”
Renewable Sustainable Energy Rev.
52
,
907
916
(
2015
).
22.
F. O.
Hocaoğlu
,
Ö. N.
Gerek
, and
M.
Kurban
, “
A novel hybrid (wind-photovoltaic) system sizing procedure
,”
Sol. Energy
83
,
2019
2018
(
2009
).
23.
M.
Smaoui
,
A.
Abdelkafi
, and
L.
Krichen
, “
Sizing of a stand-alone hybrid system supplying a desalination unit
,” in
15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, STA 2014
(
2014
), Vol.
120
, pp.
820
824
.
24.
D.
Neves
,
C. A.
Silva
, and
S.
Connors
, “
Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies
,”
Renewable Sustainable Energy Rev.
31
,
935
946
(
2014
).
25.
A.
Maleki
and
F.
Pourfayaz
, “
Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms
,”
Sol. Energy
115
,
471
483
(
2015
).
26.
A.
Askarzadeh
and
L.
dos Santos Coelho
, “
A novel framework for optimization of a grid independent hybrid renewable energy system: A case study of Iran
,”
Sol. Energy
112
,
383
396
(
2015
).
27.
R. K.
Akikur
,
R.
Saidur
,
H. W.
Ping
, and
K. R.
Ullah
, “
Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review
,”
Renewable Sustainable Energy Rev.
27
,
738
752
(
2013
).
28.
L.
Olatomiwa
,
S.
Mekhilef
, and
O. S.
Ohunakin
, “
Hybrid renewable power supply for rural health clinics (RHC) in six geo-political zones of Nigeria
,”
Sustainable Energy Technol. Assess.
13
,
1
12
(
2016
).
29.
A.
Maleki
and
A.
Askarzadeh
, “
Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran
,”
Sustainable Energy Technol. Assess.
7
,
147
153
(
2014
).
30.
L.
Olatomiwa
,
S.
Mekhilef
,
A. S. N.
Huda
, and
O. S.
Ohunakin
, “
Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria
,”
Renewable Energy
83
,
435
446
(
2015
).
31.
S.
Sinha
and
S. S.
Chandel
, “
Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems
,”
Renewable Sustainable Energy Rev.
50
,
755
769
(
2015
).
32.
S.
Sinha
and
S. S.
Chandel
, “
Improving the reliability of photovoltaic-based hybrid power system with battery storage in low wind locations
,”
Sustainable Energy Technol. Assess.
19
,
146
159
(
2017
).
33.
M.
Qolipour
,
A.
Mostafaeipour
,
S.
Shamshirband
,
O.
Alavi
,
H.
Goudarzi
, and
D.
Petković
, “
Evaluation of wind power generation potential using a three hybrid approach for households in Ardebil Province, Iran
,”
Energy Convers. Manage.
118
,
295
305
(
2016
).
34.
M. S.
Islam
, “
A techno-economic feasibility analysis of hybrid renewable energy supply options for a grid-connected large office building in southeastern part of France
,”
Sustainable Cities Soc.
38
,
492
508
(
2018
).
35.
S. K. A.
Shezan
,
S.
Julai
,
M. A.
Kibria
,
K. R.
Ullah
,
R.
Saidur
,
W. T.
Chong
, and
R. K.
Akikur
, “
Performance analysis of an off-grid wind-PV (photovoltaic)-diesel-battery hybrid energy system feasible for remote areas
,”
J. Cleaner Prod.
125
,
121
132
(
2016
).
36.
M. S.
Adaramola
,
S. S.
Paul
, and
O. M.
Oyewola
, “
Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria
,”
Energy Sustainable Dev.
19
,
72
82
(
2014
).
37.
A.
Hiendro
,
R.
Kurnianto
,
M.
Rajagukguk
,
Y. M.
Simanjuntak
, and
Junaidi
, “
Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia
,”
Energy
59
,
652
657
(
2013
).
38.
G.
Rohani
and
M.
Nour
, “
Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates
,”
Energy
64
,
828
841
(
2014
).
39.
G.
Bekele
and
G.
Tadesse
, “
Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia
,”
Appl. Energy
97
,
5
15
(
2012
).
40.
F.
Diab
,
H.
Lan
,
L.
Zhang
, and
S.
Ali
, “
An environmentally-friendly tourist village in Egypt based on a hybrid renewable energy system-Part one: What is the optimum city?
,”
Energies
8
,
6926
6944
(
2015
).
41.
F.
Diab
,
H.
Lan
,
L.
Zhang
, and
S.
Ali
, “
An environmentally-friendly tourist village in Egypt based on a hybrid renewable energy system-Part two: A net zero energy tourist village
,”
Energies
8
,
6945
6961
(
2015
).
42.
L. M.
Al-Hadhrami
, “
Performance evaluation of small wind turbines for off grid applications in Saudi Arabia
,”
Energy Convers. Manage.
81
,
19
29
(
2014
).
43.
M. A.
Baseer
,
J. P.
Meyer
,
M. M.
Alam
, and
S.
Rehman
, “
Wind speed and power characteristics for Jubail industrial city, Saudi Arabia
,”
Renewable Sustainable Energy Rev.
52
,
1193
1204
(
2015
).
44.
M. A. M.
Ramli
,
S.
Twaha
, and
A. U.
Alghamdi
, “
Energy production potential and economic viability of grid-connected wind/PV systems at Saudi Arabian coastal areas
,”
J. Renewable Sustainable Energy
9
,
065910
(
2017
).
45.
F. C.
Robert
and
S.
Gopalan
, “
Low cost, highly reliable rural electrification through a combination of grid extension and local renewable energy generation
,”
Sustainable Cities Soc.
42
,
344
354
(
2018
).
46.
D.
Akinyele
, “
Techno-economic design and performance analysis of nanogrid systems for households in energy-poor villages
,”
Sustainable Cities Soc.
34
,
335
357
(
2017
).
47.
Ö.
Güler
,
S. A.
Akdağ
, and
M. E.
Dinçsoy
, “
Feasibility analysis of medium-sized hotel's electrical energy consumption with hybrid systems
,”
Sustainable Cities Soc.
9
,
15
22
(
2013
).
48.
NEOM Saudi Arabia
, see http://www.discoverneom.com/ for information about NEOM city; accessed May 10,
2018
.
49.
S.
Rehman
and
L. M.
Al-Hadhrami
, “
Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia
,”
Energy
35
,
4986
4995
(
2010
).
50.
HOMER, Hybrid Optimization Model for Electric Renewable
, see https://www.homerenergy.com/ for PV power relationship; accessed July 15,
2018
.
51.
B. S.
Athokpam
and
M. K.
Deshmukh
, “
Operational testing of rooftop SA-SPV system in coastal tropical climate of India
,”
Energy Sustainable Dev.
47
,
17
22
(
2018
).
52.
K. P.
Satsangi
,
D. B.
Das
,
G. S. S.
Babu
, and
A. K.
Saxena
, “
Performance analysis of grid interactive solar photovoltaic plant in India
,”
Energy Sustainable Dev.
47
,
9
16
(
2018
).
53.
S. K.
Yadav
and
U.
Bajpai
, “
Performance evaluation of a rooftop solar photovoltaic power plant in Northern India
,”
Energy Sustainable Dev.
43
,
130
138
(
2018
).
54.
Surrette 4KS25P
, see http://www.rollsbattery.com/wp-content/uploads/batteries/4KS25P.pdf for battery details; accessed April 25,
2018
.
55.
Battery Integrated Grid-Interactive Inverter (BIGI)
, see http://www.princetonpower.com/images/BIGI250_SellSheet_November2015.pdf for grid inverter details; accessed April 15,
2018
.
You do not currently have access to this content.