Separation models predict diffuse horizontal irradiance from other meteorological parameters such as the global horizontal irradiance or zenith angle. From a mathematical point of view, the separation modeling problem is a regression, where the regressors are observed or computed variables and the regressand is the unobserved diffuse fraction. The most successful minute-resolution separation model prior to 2016 was proposed by Engerer, which is constructed using a trend component (cloud enhancement) and a main effect (logistic function). Subsequently, the Starke model published in 2018 further improved the Engerer model. It is herein shown that the logistic-function type of model, and many other separation models, can be transformed into a (condition-based) multiple linear regression problem. Under this transformation framework, two new models are proposed, which strictly dominate the performance of the Engerer model and the Starke model, at all 7 test sites across the continental United States, making them probably the most accurate separation models to date. The new models are also tested at 5 European sites with unseen data (i.e., not involved during model parameter fitting); their performance again dominates all benchmarking models. The new separation models leverage half-hourly satellite-derived diffuse fraction. Since satellite data are available globally, the satellite-augmented separation models have universal applicability. However, despite their good performance, empirical separation models suffer from a series of issues. Hence, models driven by atmospheric physics are the “true gems” that one should pursue.

1.
D.
Erbs
,
S.
Klein
, and
J.
Duffie
, “
Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation
,”
Sol. Energy
28
,
293
302
(
1982
).
2.
C. A.
Gueymard
and
J. A.
Ruiz-Arias
, “
Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance
,”
Sol. Energy
128
,
1
30
(
2016
).
3.
D.
Yang
, “
Solar radiation on inclined surfaces: Corrections and benchmarks
,”
Sol. Energy
136
,
288
302
(
2016
).
4.
J.
Boland
,
L.
Scott
, and
M.
Luther
, “
Modelling the diffuse fraction of global solar radiation on a horizontal surface
,”
Environmetrics
12
,
103
116
(
2001
).
5.
J.
Boland
,
B.
Ridley
, and
B.
Brown
, “
Models of diffuse solar radiation
,”
Renewable Energy
33
,
575
584
(
2008
).
6.
N.
Engerer
, “
Minute resolution estimates of the diffuse fraction of global irradiance for southeastern Australia
,”
Sol. Energy
116
,
215
237
(
2015
).
7.
The word
“effect” comes from the statistical modeling literature.
8.
B.
Ridley
,
J.
Boland
, and
P.
Lauret
, “
Modelling of diffuse solar fraction with multiple predictors
,”
Renewable Energy
35
,
478
483
(
2010
).
9.
A. R.
Starke
,
L. F.
Lemos
,
J.
Boland
,
J. M.
Cardemil
, and
S.
Colle
, “
Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction
,”
Renewable Energy
125
,
472
484
(
2018
).
10.
R. G.
Rojas
,
N.
Alvarado
,
J.
Boland
,
R.
Escobar
, and
A.
Castillejo-Cuberos
, “
Diffuse fraction estimation using the BRL model and relationship of predictors under Chilean, Costa Rican and Australian climatic conditions
,”
Renewable Energy
136
,
1091
1106
(
2019
).
11.
J.
Boland
,
J.
Huang
, and
B.
Ridley
, “
Decomposing global solar radiation into its direct and diffuse components
,”
Renewable Sustainable Energy Rev.
28
,
749
756
(
2013
).
12.

This naming convention takes the initials from the authors' last names from Ref. 8.

13.

This conclusion is drawn based on the fact that nRMSEs of the new models are much smaller than those of STARKE (the most recent advance in separation modeling in 2018) and ENGERER2 (the quasi-universal model confirmed in 2016).

14.
J.
Ruiz-Arias
,
H.
Alsamamra
,
J.
Tovar-Pescador
, and
D.
Pozo-Vázquez
, “
Proposal of a regressive model for the hourly diffuse solar radiation under all sky conditions
,”
Energy Convers. Manage.
51
,
881
893
(
2010
).
15.

Arguably, one can consider using KT from yesterday and y from the previous three time steps so that the model gains the real-time property. Nevertheless, the performance of such a model requires further verification.

16.
C. A.
Gueymard
, “
REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset
,”
Sol. Energy
82
,
272
285
(
2008
).
17.
K.
Hollands
, “
A derivation of the diffuse fraction's dependence on the clearness index
,”
Sol. Energy
35
,
131
136
(
1985
).
18.
K.
Hollands
and
S.
Crha
, “
An improved model for diffuse radiation: Correction for atmospheric back-scattering
,”
Sol. Energy
38
,
233
236
(
1987
).
19.

The word “range” is used in the context of “domain and range of a function.”

20.
D. M.
Bates
and
D. G.
Watts
,
Nonlinear Regression Analysis and Its Applications
(
John Wiley & Sons, Inc
.,
Hoboken, NJ, USA
,
1988
).
21.
D.
Yang
,
G. M.
Yagli
, and
H.
Quan
, “
Quality control for solar irradiance data
,” in
2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia)
(
2018
), pp.
208
213
.
22.
D.
Yang
, “
SolarData: An R package for easy access of publicly available solar datasets
,”
Sol. Energy
171
,
A3
A12
(
2018
).
23.
M.
Sengupta
,
Y.
Xie
,
A.
Lopez
,
A.
Habte
,
G.
Maclaurin
, and
J.
Shelby
, “
The national solar radiation data base (NSRDB)
,”
Renewable Sustainable Energy Rev.
89
,
51
60
(
2018
).
24.
Y.
Xie
,
M.
Sengupta
, and
J.
Dudhia
, “
A fast all-sky radiation model for solar applications (FARMS): Algorithm and performance evaluation
,”
Sol. Energy
135
,
435
445
(
2016
).
25.
D.
Yang
, “
Kriging for NSRDB PSM version 3 satellite-derived solar irradiance
,”
Sol. Energy
171
,
876
883
(
2018
).
26.
D.
Yang
, “
Spatial prediction using kriging ensemble
,”
Sol. Energy
171
,
977
982
(
2018
).
27.
D.
Yang
, “
A correct validation of the national solar radiation data base (NSRDB)
,”
Renewable Sustainable Energy Rev.
97
,
152
155
(
2018
).
28.
A.
Driemel
,
J.
Augustine
,
K.
Behrens
,
S.
Colle
,
C.
Cox
,
E.
Cuevas-Agulló
,
F. M.
Denn
,
T.
Duprat
,
M.
Fukuda
,
H.
Grobe
,
M.
Haeffelin
,
G.
Hodges
,
N.
Hyett
,
O.
Ijima
,
A.
Kallis
,
W.
Knap
,
V.
Kustov
,
C. N.
Long
,
D.
Longenecker
,
A.
Lupi
,
M.
Maturilli
,
M.
Mimouni
,
L.
Ntsangwane
,
H.
Ogihara
,
X.
Olano
,
M.
Olefs
,
M.
Omori
,
L.
Passamani
,
E. B.
Pereira
,
H.
Schmithüsen
,
S.
Schumacher
,
R.
Sieger
,
J.
Tamlyn
,
R.
Vogt
,
L.
Vuilleumier
,
X.
Xia
,
A.
Ohmura
, and
G.
König-Langlo
, “
Baseline surface radiation network (BSRN): structure and data description (1992–2017)
,”
Earth Syst. Sci. Data
10
,
1491
1501
(
2018
).
29.
Z.
Qu
,
A.
Oumbe
,
P.
Blanc
,
B.
Espinar
,
G.
Gesell
,
B.
Gschwind
,
L.
Klüser
,
M.
Lefèvre
,
L.
Saboret
,
M.
Schroedter-Homscheidt
, and
L.
Wald
, “
Fast radiative transfer parameterisation for assessing the surface solar irradiance: The Heliosat-4 method
,”
Meteorol. Z.
26
,
33
57
(
2017
).
30.

If the errors of satellite interpolation are comparable to separation models, one can directly use the downscaled satellite-derived DHI.

31.
M.
Lin
,
H. C.
Lucas
, and
G.
Shmueli
, “
Too big to fail: Large samples and the p-value problem
,”
Inf. Syst. Res.
24
,
906
917
(
2013
).
32.
R.
Perez
,
P.
Ineichen
,
K.
Moore
,
M.
Kmiecik
,
C.
Chain
,
R.
George
, and
F.
Vignola
, “
A new operational model for satellite-derived irradiances: Description and validation
,”
Sol. Energy
73
,
307
317
(
2002
).

Supplementary Material

You do not currently have access to this content.