Yaw angle control is known nowadays as a promising and effective technique to mitigate wake effects in wind farms. In this paper, we perform wind tunnel experiments to study the performance of a model wind farm with five turbine rows under a wide variety of yaw angle distributions. Electrical servo controllers are used to monitor and control the operating conditions of each model wind turbine, which consists of a recently developed, highly efficient rotor with a diameter of 15 cm. Each turbine is used as a sensor to detect its own inflow conditions. Using this method ensures us that all the turbines within the wind farm always operate with an optimal rotational velocity, regardless of their yaw angles or inflow conditions. Wind farm power measurements are carried out for more than 200 cases with different yaw angle distributions. Our results show that yaw angle control can increase the overall wind farm efficiency as much as 17% with respect to fully non-yawed conditions. Special emphasis is placed on studying yaw angle distributions with different levels of simplicity and power improvement. Among different yaw angle distributions, the most successful ones are those with a relatively large yaw angle value for the first turbine row, and then, the yaw angle decreases progressively for downwind rows until it eventually becomes zero for the last one. In addition, power measurements show that yaw angle control can improve the wind farm efficiency more noticeably for a larger number of turbine rows although this improvement is expected to reach a plateau after several rows.

1.
Á.
Jiménez
,
A.
Crespo
, and
E.
Migoya
, “
Application of a LES technique to characterize the wake deflection of a wind turbine in yaw
,”
Wind Energy
13
,
559
572
(
2010
).
2.
M.
Bastankhah
and
F.
Porté-Agel
, “
Experimental and theoretical study of wind turbine wakes in yawed conditions
,”
J. Fluid Mech.
806
,
506
541
(
2016
).
3.
H.
Glauert
,
A General Theory of the Autogyro
(
HM Stationery Office
,
1926
).
4.
R. P.
Coleman
,
A. M.
Feingold
, and
C. W.
Stempin
, “
Evaluation of the induced-velocity field of an idealized helicoptor rotor
,” Technical Report No. L5E10, DTIC Document,
1945
.
5.
I.
Grant
,
P.
Parkin
, and
X.
Wang
, “
Optical vortex tracking studies of a horizontal axis wind turbine in yaw using laser-sheet, flow visualisation
,”
Exp. Fluids
23
,
513
519
(
1997
).
6.
I.
Grant
and
P.
Parkin
, “
A DPIV study of the trailing vortex elements from the blades of a horizontal axis wind turbine in yaw
,”
Exp. Fluids
28
,
368
376
(
2000
).
7.
D.
Medici
and
P.
Alfredsson
, “
Measurement on a wind turbine wake: 3D effects and bluff body vortex shedding
,”
Wind Energy
9
,
219
236
(
2006
).
8.
P. A.
Fleming
,
P. M. O.
Gebraad
,
S.
Lee
,
J.
van Wingerden
,
K.
Johnson
,
M.
Churchfield
,
J.
Michalakes
,
P.
Spalart
, and
P.
Moriarty
, “
Evaluating techniques for redirecting turbine wakes using SOWFA
,”
Renewable Energy
70
,
211
218
(
2014
).
9.
M. F.
Howland
,
J.
Bossuyt
,
M.-T. L. A. J.
Meyers
, and
C.
Meneveau
, “
Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions
,”
J. Renewable Sustainable Energy
8
,
043301
(
2016
).
10.
M.
Churchfield
,
Q.
Wang
,
A.
Scholbrock
,
T.
Herges
,
T.
Mikkelsen
, and
M.
Sjöholm
, “
Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment
,”
J. Phys.: Conf. Ser.
753
,
032009
(
2016
).
11.
J.
Wang
,
S.
Foley
,
E.
Nanos
,
T.
Yu
,
F.
Campagnolo
,
C.
Bottasso
,
A.
Zanotti
, and
A.
Croce
, “
Numerical and experimental study for wake redirection techniques in a boundary layer wind tunnel
,”
J. Phys.: Conf. Ser.
854
,
012048
(
2017
).
12.
C. R.
Shapiro
,
D. F.
Gayme
, and
C.
Meneveau
, “
Modelling yawed wind turbine wakes: A lifting line approach
,”
J. Fluid Mech.
841
,
R1
(
2018
).
13.
J.
Schottler
,
J.
Bartl
,
F.
Mühle
,
L.
Sætran
,
J.
Peinke
, and
M.
Hölling
, “
Wind tunnel experiments on wind turbine wakes in yaw: Redefining the wake width
,”
Wind Energy Sci.
3
,
257
273
(
2018
).
14.
D.
Medici
,
S.
Ivanell
,
J.-Å.
Dahlberg
, and
P. H.
Alfredsson
, “
The upstream flow of a wind turbine: Blockage effect
,”
Wind Energy
14
,
691
697
(
2011
).
15.
M.
Bastankhah
and
F.
Porté-Agel
, “
Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region
,”
Phys. Fluids
29
,
065105
(
2017
).
16.
A.
Ozbay
,
W.
Tian
,
Z.
Yang
, and
H.
Hu
, “
Interference of wind turbines with different yaw angles of the upstream wind turbine
,” in
42nd AIAA Fluid Dynamics Conference and Exhibit
(
2012
), p.
2719
.
17.
P.
Krogstad
and
M. S.
Adaramola
, “
Performance and near wake measurements of a model horizontal axis wind turbine
,”
Wind Energy
15
,
743
756
(
2012
).
18.
M.
Bastankhah
and
F.
Porté-Agel
, “
A wind-tunnel investigation of wind-turbine wakes in yawed conditions
,”
J. Phys.: Conf. Ser.
625
,
012014
(
2015
).
19.
J.
Bartl
,
F.
Mühle
,
J.
Schottler
,
L.
Sætran
,
J.
Peinke
,
M.
Adaramola
, and
M.
Hölling
, “
Wind tunnel experiments on wind turbine wakes in yaw: Effects of inflow turbulence and shear
,”
Wind Energy Sci.
3
,
329
343
. (
2018
).
20.
M.
Adaramola
and
P.-Å.
Krogstad
, “
Experimental investigation of wake effects on wind turbine performance
,”
Renewable Energy
36
,
2078
2086
(
2011
).
21.
P. M. O.
Gebraad
,
F. W.
Teeuwisse
,
J. W.
Wingerden
,
P. A.
Fleming
,
S. D.
Ruben
,
J. R.
Marden
, and
L. Y.
Pao
, “
Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study
,”
Wind Energy
19
,
95
114
(
2016
).
22.
J.
Park
and
K. H.
Law
, “
A data-driven, cooperative wind farm control to maximize the total power production
,”
Appl. Energy
165
,
151
165
(
2016
).
23.
J.
Park
and
K. H.
Law
, “
Bayesian ascent: A data-driven optimization scheme for real-time control with application to wind farm power maximization
,”
IEEE Trans. Control Syst. Technol.
24
,
1655
1668
(
2016
).
24.
F.
Campagnolo
,
V.
Petrović
,
J.
Schreiber
,
E. M.
Nanos
,
A.
Croce
, and
C. L.
Bottasso
, “
Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization
,”
J. Phys.: Conf. Ser.
753
,
032006
(
2016
).
25.
P. A.
Fleming
,
J.
Annoni
,
M. J.
Churchfield
,
L.
Martinez
,
K. M.
Gruchalla
,
M. J.
Lawson
, and
P. J.
Moriarty
, “
A simulation study demonstrating the importance of large-scale trailing vortices in wake steering
,”
Wind Energy Sci.
3
,
243
255
(
2018
).
26.
J. M. S.
Bartl
,
F. V.
Mühle
, and
L. R.
Sætran
, “
Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines
,”
Wind Energy Sci.
3
,
489
(
2018
).
27.
J. R.
Garratt
, “
Review: The atmospheric boundary layer
,”
Earth-Sci. Rev.
37
,
89
134
(
1994
).
28.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer Science
,
2009
), Vol.
13
.
29.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new miniature wind turbine for wind tunnel experiments. Part i: Design and performance
,”
Energies
10
,
908
(
2017
).
30.
M.
Bastankhah
and
F.
Porté-Agel
, “
A new miniature wind turbine for wind tunnel experiments. Part ii: Wake structure and flow dynamics
,”
Energies
10
,
923
(
2017
).
31.
R.
Barthelmie
,
G. C.
Larsen
,
S. T.
Frandsen
,
L.
Folkerts
,
K.
Rados
,
S.
Pryor
,
B.
Lange
, and
G.
Schepers
, “
Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar
,”
J. Atmos. Oceanic Technol.
23
,
88
8–
901
(
2006
).
32.
F.
Carbajo Fuertes
,
C. D.
Markfort
, and
F.
Porté-Agel
, “
Wind turbine wake characterization with nacelle-mounted wind lidars for analytical wake model validation
,”
Remote Sens.
10
,
668
(
2018
).
33.
D.
Dilip
and
F.
Porté-Agel
, “
Wind turbine wake mitigation through blade pitch offset
,”
Energies
10
,
757
(
2017
).
You do not currently have access to this content.