The refrigerator is one of the most essential domestic appliances and causes considerable energy consumption every year. The efficiency of a normal household refrigerator is significantly affected by the heat-insulating property of the thermal barrier of the freezer due to its low inner temperature. In this study, a novel refrigerator with a loop thermosyphon is put forward to decrease the heat transfer between the freezer and ambient air. It has great potential to be popularized as a sustainable energy technology or applied in the renewable energy field considering its significant energy-saving effect, simple structure, and low cost. The energy-saving behavior of the refrigerator is preliminarily evaluated based on the theoretical calculation. The temperatures of ambient, the fresh food compartment, and the location of the heat transport component are varied; the impacts are analyzed. The total cold loss of the topside and side freezer walls is reduced from 16 W to 14 W in the normal test conditions, and the energy-saving ratio varies from 6.3% to 28.5% when the ambient temperature, the location of the heat transport component, and the fresh food compartment temperature vary. The results certificate the energy-saving capability of the novel refrigerator and its reliability in hot climate.

1.
J. M.
Belman-Flores
,
J. M.
Barroso-Maldonado
,
A. P.
Rodríguez-Muñoz
, and
G.
Camacho-Vázquez
, “
Enhancements in domestic refrigeration, approaching a sustainable refrigerator: A review
,”
Renewable Sustainable Energy Rev.
51
,
955
968
(
2015
).
2.
S.
Choi
,
U.
Han
,
H.
Cho
, and
H.
Lee
, “
Recent advances in household refrigerator cycle technologies
,”
Appl. Therm. Eng.
132
,
560
574
(
2018
).
3.
L.
Harrington
,
L.
Aye
, and
B.
Fuller
, “
Impact of room temperature on energy consumption of household refrigerators: Lessons from analysis of field and laboratory data
,”
Appl. Energy
211
,
346
357
(
2018
).
4.
Y.
Yoon
,
H.
Jeong
, and
K. S.
Lee
, “
Adaptive defrost methods for improving defrosting efficiency of household refrigerator
,”
Energy Convers. Manage.
157
,
511
516
(
2018
).
5.
L. O. S.
Bozelin
,
S. C.
Amico
,
J. V. C.
Vargas
, and
J. A. R.
Parise
, “
Experimental development of an intelligent refrigeration system
,”
Int. J. Refrigerator
28
,
165
175
(
2005
).
6.
P. J.
Rubas
and
C. W.
Bullard
, “
Factors contributing to refrigerator cycling losses
,”
Int. J. Refrig.
94
,
168
176
(
1995
).
7.
F. G.
Arroyo-Cabañas
,
J. E.
Aguillón-Martínez
,
J. J.
Ambríz-García
, and
G.
Canizal
, “
Electric energy saving potential by substitution of domestic refrigerators in México
,”
Energy Policy
37
,
4737
4742
(
2009
).
8.
P.
Bansal
,
E.
Vineyard
, and
O.
Abdelaziz
, “
Advances in household appliances: A review
,”
Appl. Therm. Eng.
31
,
3748
3760
(
2011
).
9.
K.
Azzouz
,
D.
Leducq
, and
D.
Gobin
, “
Performance enhancement of a household refrigerator by addition of latent heat storage
,”
Int. J. Refrig.
31
,
892
901
(
2008
).
10.
W. L.
Cheng
,
D.
Miao
,
X. D.
Yuan
, and
B. C.
Han
, “
Analysis of energy saving performance for household refrigerator with thermal storage of condenser and evaporator
,”
Energy Convers. Manage.
132
,
180
188
(
2017
).
11.
Y.
Liu
,
K.
Chen
,
T.
Xin
,
L.
Cao
,
L.
Chen
, and
W.
Ma
, “
Experimental study on household refrigerator with diffuser pipe
,”
Appl. Therm. Eng.
31
,
1468
1473
(
2011
).
12.
E.
Lin
,
G.
Ding
,
D.
Zhao
,
Y.
Liao
,
N.
Yu
, and
J.
Yamashita
, “
Dynamic model for multi-compartment indirect cooling household refrigerator using Z-transfer function based cabinet model
,”
Int. J. Therm. Sci.
50
,
1308
1325
(
2011
).
13.
C. F.
Afonso
, “
Household refrigerators: Forced air ventilation in the compressor and its positive environmental impact
,”
Int. J. Refrig.
36
,
904
912
(
2013
).
14.
E.
Söylemez
,
E.
Alpman
, and
A.
Onat
, “
Experimental analysis of hybrid household refrigerators including thermoelectric and vapour compression cooling systems
,”
Int. J. Refrig.
95
,
93
107
(
2018
).
15.
J.
Boeng
and
C.
Melo
, “
Mapping the energy consumption of household refrigerators by varying the refrigerant charge and the expansion restriction
,”
Int. J. Refrig.
41
,
37
44
(
2014
).
16.
M.
Fatouh
and
H.
Abou-Ziyan
, “
Energy and exergy analysis of a household refrigerator using a ternary hydrocarbon mixture in tropical environment: Effects of refrigerant charge and capillary length
,”
Appl. Therm. Eng.
145
,
14
26
(
2018
).
17.
C.
Aprea
,
A.
Greco
, and
A.
Maiorino
, “
Experimental investigation of the energetic performances of HFO1234yf and its binary mixtures with HFC134a in a household refrigerator
,”
Int. J. Refrig.
76
,
109
117
(
2017
).
18.
H.
Abou-Ziyan
and
M.
Fatouh
, “
Transient and cyclic characteristics of a household refrigerator using ternary hydrocarbon mixture: An experimental investigation
,”
Appl. Therm. Eng.
129
,
446
462
(
2018
).
19.
P.
Zhang
,
Q. S.
Liu
, and
R. Z.
Wang
, “
Performance and applicability of a dc refrigerator powered by the photovoltaics
,”
J. Renewable Sustainable Energy
2
,
013101
(
2010
).
20.
M.
Laidi
,
S.
Hanini
,
B.
Abbad
,
M.
Bedja
,
M.
Ouali
,
Y.
Ferhat
, and
S.
Guers
, “
The study and performance of a modified ENIEM conventional refrigerator to serve as a photovoltaic powered one under Algerian climate conditions
,”
J. Renewable Sustainable Energy
4
,
053112
(
2012
).
21.
E.
Aridhi
,
M.
Abbes
, and
A.
Mami
, “
Solutions based on renewable energy and technology to improve the performance of refrigeration systems
,”
J. Renewable Sustainable Energy
8
,
065906
(
2016
).
22.
A.
Mahesh
and
S. C.
Kaushik
, “
Solar adsorption cooling system: An overview
,”
J. Renewable Sustainable Energy
4
(
2
),
022701
(
2012
).
23.
O.
Laguerre
,
E.
Derens
, and
B.
Palagos
, “
Study of domestic refrigerator temperature and analysis of factors affecting temperature: A French survey
,”
Int. J. Refrig.
25
,
653
659
(
2002
).
24.
M. H.
Ahmadi
and
M. A.
Ahmadi
, “
Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle
,”
Energy Convers. Manage.
89
,
147
155
(
2015
).
25.
A.
Franco
and
S.
Filippeschi
, “
Closed loop two phase thermosyphon of small dimensions: A review of the experimental results
,”
Microgravity Sci. Technol.
24
,
165
179
(
2012
).
26.
K. S.
Chen
,
S. T.
Tsai
, and
Y. W.
Yang
, “
Heat transfer performance of a double-loop separate-type heat pipe: Measurement results
,”
Energy Convers. Manage.
35
,
1131
1141
(
1994
).
27.
J.
Cao
,
G.
Pei
,
C.
Chen
,
D.
Jiao
, and
J.
Li
, “
Preliminary study on variable conductance loop thermosyphons
,”
Energy Convers. Manage.
147
,
66
74
(
2017
).
28.
J.
Cao
,
G.
Pei
,
Y.
Su
,
A.
Munir
,
J.
Li
, and
Y.
Wang
, “
Effect of reservoir on controllable loop thermosyphon
,”
Bulg. Chem. Commun.
48
,
297
305
(
2016
).
29.
H. M. S.
Hussein
, “
Transient investigation of a two phase closed thermosyphon flat plate solar water heater
,”
Energy Convers. Manage.
43
,
2479
2492
(
2002
).
30.
M.
Esen
and
H.
Esen
, “
Experimental investigation of a two-phase closed thermosyphon solar water heater
,”
Sol. Energy
79
,
459
468
(
2005
).
31.
S.
Chen
and
J.
Yang
, “
Loop thermosyphon performance study for solar cells cooling
,”
Energy Convers. Manage.
121
,
297
304
(
2016
).
32.
R.
Khodabandeh
, “
Thermal performance of a closed advanced two-phase thermosyphon loop for cooling of radio base stations at different operating conditions
,”
Appl. Therm. Eng.
24
,
2643
2655
(
2004
).
33.
K.
Matsubara
,
Y.
Matsudaira
, and
I.
Kourakata
, “
Thermosyphon loop thermal collector for low-temperature waste heat recovery
,”
Appl. Therm. Eng.
92
,
261
270
(
2016
).
34.
M. R.
Gartia
,
P. K.
Vijayan
, and
D. S.
Pilkhwal
, “
A generalized flow correlation for two-phase natural circulation loops
,”
Nucl. Eng. Des.
236
,
1800
1809
(
2006
).
35.
A. K.
Nayak
,
P.
Dubey
,
D. N.
Chavan
 et al., “
Study on the stability behavior of two-phase natural circulation systems using a four-equation drift flux model
,”
Nucl. Eng. Des.
237
,
386
398
(
2007
).
36.
J. L. G.
Oliveira
,
C.
Tecchio
,
K. V.
Paiva
,
M. B. H.
Mantelli
,
R.
Gandolfi
, and
L. G. S.
Ribeiro
, “
In-flight testing of loop thermosyphons for aircraft cooling
,”
Appl. Therm. Eng.
98
,
144
156
(
2016
).
37.
J.
Cao
,
J.
Li
,
P.
Zhao
,
D.
Jiao
,
P.
Li
,
M.
Hu
, and
G.
Pei
, “
Performance evaluation of controllable separate heat pipes
,”
Appl. Therm. Eng.
100
,
518
527
(
2016
).
38.
J.
Cao
,
G.
Pei
,
D.
Jiao
,
P.
Zhao
,
J.
Li
, and
Y.
Wang
, “
Experimental investigation on controllable loop thermosyphon with a reservoir
,”
Appl. Therm. Eng.
126
,
322
329
(
2017
).
39.
F. P.
lncropera
 et al.,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons
,
2011
).
You do not currently have access to this content.