For economic reasons, above a certain water speed, it is desirable for current turbines to maintain a constant power output. This requires a control strategy to shed power. Here, such a strategy is evaluated through simulation and laboratory experiment for a helically bladed turbine with four blades and a straight-bladed turbine with two blades. These are contrasting cases because hydrodynamic torque produced by the straight-bladed turbine has a substantially more azimuthal phase variability than the helically bladed turbine. For practical implementation, a control algorithm is desired that requires only a time-average characteristic performance curve and estimates of angular velocity and control torque. Additionally, the transition between power maximizing and power tracking regimes should be smooth and automatic. The controller can be further constrained to only apply a resistive torque to the turbine. A control strategy satisfying these constraints is shown experimentally to achieve these objectives for both types of turbines at a variety of power set points. The power-tracking error (<3%) is primarily at the blade passage frequency for the straight-bladed turbine and at the rate of turbine rotation for the helical turbine. While partially a consequence of how the generator drive is tuned, comparison to simulation indicates that perfect power-tracking is not generally possible even under ideal conditions for a fixed-pitch, cross-flow turbine using purely resistive torque control.

1.
V. S.
Neary
,
B.
Gunawan
, and
D. C.
Sale
, “
Turbulent inflow characteristics for hydrokinetic energy conversion in rivers
,”
Renewable Sustainable Energy Rev.
26
,
437
445
(
2013
).
2.
J.
Thomson
,
B.
Polagye
,
V.
Durgesh
, and
M. C.
Richmond
, “
Measurements of turbulence at two tidal energy sites in Puget Sound, WA
,”
IEEE J. Oceanic Eng.
37
(
3
),
363
374
(
2012
).
3.
A. E. S.
Duerr
and
M. R.
Dhanak
, “
An assessment of the hydrokinetic energy resource of the Florida current
,”
IEEE J. Oceanic Eng.
37
(
2
),
281
293
(
2012
).
4.
M. J.
Khan
,
G.
Bhuyan
,
M. T.
Iqbal
, and
J. E.
Quaicoe
, “
Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review
,”
Appl. Energy
86
(
10
),
1823
1835
(
2009
).
5.
H. J.
Sutherland
,
D. E.
Berg
, and
T. D.
Ashwill
, “
A retrospective of VAWT technology
,”
Technical Report No. SAND2012-0304
,
2012
.
6.
T. J.
Carlson
,
M.
Grear
,
A. E.
Copping
,
M.
Halvorsen
,
R.
Jepsen
, and
K.
Metzinger
, “
Assessment of strike of adult killer whales by an openhydro tidal turbine blade
,”
Report No. DE-AC05-76RL01830
(U.S. Department of Energy by Pacific Northwest National Laboratory,
2014
).
7.
C.
Garrett
and
P.
Cummins
, “
The efficiency of a turbine in a tidal channel
,”
J. Fluid Mech.
588
,
243
251
(
2007
).
8.
L. Y.
Pao
and
K. E.
Johnson
, “
Control of wind turbines: Approaches, challenges, and recent developments
,”
IEEE Control Syst.
31
,
44
62
(
2011
).
9.
L. Y.
Pao
and
K. E.
Johnson
, “
A tutorial on the dynamics and control of wind turbines and wind farms
,” in
American Control Conference
,
2009
.
10.
Y. K.
Sanusi
and
S. G.
Abisoye
, “
Estimation of wind energy potential in Southwestern Nigeria
,”
Pac. J. Sci. Technol.
12
(
2
),
160
166
(
2011
).
11.
J.
Flynn
, “
Assessment of the wind energy potential at bausch + lomb waterford
,” Ph.D. thesis,
Waterford Institute of Technology
,
2013
.
12.
K. E.
Johnson
,
L. Y.
Pao
,
M. J.
Balas
, and
L. J.
Fingersh
, “
Control of variable speed wind turbines standard and adaptive techniques for maximizing energy capture
,”
IEEE Control Syst.
26
,
70
81
(
2006
).
13.
T.
Pan
,
Z.
Ji
, and
Z.
Jiang
, “
Maximum power point tracking of wind energy conversion systems based on sliding mode extremum seeking control
,” in
2008 IEEE Energy 2030 Conference
,
2008
.
14.
J. H.
Laks
,
L. Y.
Pao
, and
A. D.
Wright
, “
Control of wind turbines: Past, present, and future
,” in
American Control Conference
(
2009
), pp.
2096
2103
.
15.
F.
Dunnel
and
L. Y.
Pao
, “
Benefit of wind turbine preview control as a function of measurement coherence and preview time
,” in
2013 American Control Conference
,
2013
.
16.
D.
Forbush
,
R. J.
Cavagnaro
,
J.
Donegan
,
J.
McEntee
, and
B.
Polagye
, “
Multi-mode evaluation of power-maximizing cross-flow turbine controllers
,”
Int. J. Mar. Energy
20
,
80
96
(
2017
).
17.
B.
Kirke
and
L.
Lazauskas
, “
Variable pitch Darrieus water turbines
,”
J. Fluid Sci. Technol.
3
(
3
),
430
438
(
2008
).
18.
L. J.
Fingersh
and
K. E.
Johnson
, “
Baseline results and future plans for the NREL controls advanced research turbine
,”
Report No. NREL/CP-500-35058
,
2004
.
19.
R. J.
Cavagnaro
, “
Performance evaluation, emulation, and control of cross-flow hydrokinetic turbines
,” Doctoral thesis,
University of Washington
,
2016
.
20.
D.
Forbush
,
B.
Polagye
,
J.
Thomson
,
L.
Kilcher
,
J.
Donegan
, and
J.
McEntee
, “
Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow
,”
Int. J. Mar. Energy
16
,
150
161
(
2016
).
21.
A.
Scholbrock
,
P.
Fleming
,
L. J.
Fingersh
,
A.
Wright
,
D.
Schlipf
,
F.
Haizmann
, and
F.
Belen
, “
Field testing LIDAR-based feed-forward controls on the NREL controls advanced research turbine
,” in
51st AIAA Aerospace Science Meeting Including the New Horizons Forum Aerospace Exposition
, Dallas, TX,
2013
, pp.
1
8
.
22.
A.
Wright
,
P. W.
Cheng
,
D.
Schlipf
,
P.
Fleming
,
F.
Haizmann
,
K.
Andrew
,
M.
Hofs
,
A.
Wright
, and
P.
Wen Cheng
, “
Field Testing of feedforward collective pitch control on the CART2 using a Nacelle-based Lidar scanner
,” in
Proceedings of the Science of Making Torque from Wind
, Oldenburg, Germany,
2012
.
23.
T.
Burton
,
N.
Jenkins
,
D.
Sharpe
, and
E.
Bossanyi
,
Wind Energy Handbook
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2011
).
24.
I.
Paraschivoiu
,
O.
Trifu
, and
F.
Saeed
, “
H-Darrieus wind turbine with blade pitch control
,”
Int. J. Rotating Mach.
2009
,
1
7
(
2009
).
25.
L.
Lazauskas
and
B. K.
Kirke
, “
Modeling passive variable pitch cross flow hydrokinetic turbines to maximize performance and smooth operation
,”
Renewable Energy
45
,
41
50
(
2012
).
26.
H. C.
Tsai
and
T.
Colonius
, “
Coriolis effect on dynamic stall in a vertical axis wind turbine at moderate Reynolds number
,” in
32nd AIAA Applied Aerodynamics Conference
, Pasadena, CA (AIAA,
2016
), Vol.
54
.
27.
J.
Creaby
,
Y.
Li
, and
J. E.
Seem
, “
Maximizing wind turbine energy capture using multivariable extremum seeking control
,”
Wind Eng.
33
,
361
387
(
2009
).
28.
W.-M.
Lin
and
C.-M.
Hong
, “
Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system
,”
Energy
35
(
6
),
2440
2447
(
2010
).
29.
D.
Schlipf
,
D. J.
Schlipf
, and
M.
Kühn
, “
Nonlinear model predictive control of wind turbines using LIDAR
,”
Wind Energy
16
,
1107
1129
(
2013
).
30.
A.
Kusiak
,
W.
Li
, and
Z.
Song
, “
Dynamic control of wind turbines
,”
Renewable Energy
35
(
2
),
456
463
(
2010
).
31.
B.
Strom
,
S. L.
Brunton
, and
B.
Polagye
, “
Intracycle angular velocity control of cross-flow turbines
,”
Nat. Energy
2
,
17103
(
2017
).
32.
M.
Hauck
,
I.
Munteanu
,
A. I.
Bratcu
,
S.
Bacha
, and
D.
Roye
, “
Operation of grid-connected cross-flow water turbines in the stall region by direct power control
,”
IEEE Trans. Ind. Electron.
58
(
4
),
1132
1140
(
2011
).
33.
P.
Bachant
and
M.
Wosnik
, “
Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency
,”
Renewable Energy
74
,
318
325
(
2015
).
34.
V. J.
Ginter
and
J. K.
Pieper
, “
Robust gain scheduled control of a hydrokinetic turbine
,”
IEEE Trans. Control Syst. Technol.
19
(
4
),
805
817
(
2011
).
35.
K. E.
Johnson
,
L. J.
Fingersh
,
M. J.
Balas
, and
L. Y.
Pao
, “
Methods for increasing region 2 power capture on a variable speed HAWT
,” in
23rd ASME Wind Energy Symposium
, Reno, NV,
2004
.
36.
R. J.
Cavagnaro
and
B.
Polagye
, “
Dynamics of a stalling cross-flow turbine
,” in
Proceedings of the 4th Marine Energy Technology Symposium
, Washington, D.C.,
2016
.
37.
R. J.
Cavagnaro
,
B.
Polagye
,
J.
Thomson
,
B.
Fabien
,
D.
Forbush
, and
L.
Kilcher
, “
Emulation of a hydrokinetic turbine to assess control and grid integration
,” in
Proceedings of the 11th European Wave Tidal Energy Conference
, Nantes, France,
2015
, pp.
1
8
.
38.
D. G.
Goring
and
V. I.
Nikora
, “
Despiking acoustic Doppler velocimeter data
,”
J. Hydraul. Eng.
128
(
1
),
117
126
(
2002
).
39.
M.
J.
Barnsley
and
J.
F.
Wellicome
, “Final report on the 2nd phase of development and testing of a horizontal axis wind turbine test rig for the investigation of stall regulation aerodynamics,” Technical Report No. E.5A/CON5103/1746 (ETSU,
1990
).
40.
B.
Polagye
,
B.
Strom
,
H.
Ross
,
D.
Forbush
, and
R.
Cavagnaro
, Comparison of Cross-flow Turbine Performance under Torque-Regulated and Speed-Regulated Control, in review by JRSE).
41.
G. I.
Taylor
, “
The statistical theory of isotropic turbulence
,”
J. Aeronaut. Sci.
4
,
311
315
(
1937
).
You do not currently have access to this content.