The intensity of solar radiation (SR) is one of the most important required inputs for the estimation of photovoltaic (PV) power station output. Meanwhile, the efficiency of solar PV systems is affected by meteorological factors such as temperature, dust, precipitation, and snow. Meteorological data from satellites provide a viable way for estimating PV potential due to its advantage in spatial coverage and temporal resolution. This paper presents a new approach to adjust SR data from satellites based on the cloud optical thickness (CLOT) before evaluating the solar PV power (PPV) potential, with the effective efficiency of solar cells computed based on temperature, dust, precipitation, and snow. The objective of this study is to evaluate the over-all spatiotemporal solar PV potential in the Asia Pacific region which will holistically include limiting meteorological factors and identify which factor contributes most significantly to the decrease in solar PV potential in selected cities in the region. First, SR and CLOT data from Advanced Himawari Imager 8 and a SKYNET station were processed to derive the correction factor for solar radiation data. Second, satellite data for temperature (MOD11), precipitation (global satellite mapping of precipitation), dust (MOD04), and snow cover (MOD10) were processed to derive the effective solar PV efficiency. Finally, maps showing the seasonal PV power potential over the Asia Pacific region were generated, with selected cities zoomed in for detailed analysis using mean monthly values from March 2016 to February 2017. The results showed that the maximum theoretical PPV in the region was estimated to be 1.9 GW per 17.5 km2 effective pixel area. Moreover, PPV decreased by maximum values of 180 MW, 550 MW, and 225 MW due to temperature, dust, and snow, respectively. For Beijing, Tokyo, and Jakarta, the major contributor to the decrease in PPV is dust, while Khabarovsk is consistently affected by snow effects. Initial validation of the model shows over- and underestimation of solar PV output compared to the actual values by as high as 30%. However, very high values of coefficient of determination (>0.90) show promising results of the model. The contribution of this study is two-fold: regional-scale assessment of PPV potential and investigation of the collective effect and individual contributions of dust, temperature, and snow to the decrease in PPV potential.

1.
ADB
,
Renewable Energy Developments and Potential in the Greater Mekong Subregion
(
Asian Development Bank
,
Mandaluyong
,
2015
).
2.
AIIB
,
Energy Sector Strategy: Sustainable Energy for Asia
(
Asian Infrastructure Investment Bank
,
Beijing
,
2017
).
3.
Alsayed
,
M.
,
Cacciato
,
M.
,
Scarcella
,
G.
, and
Scelba
,
G.
, “
Multicriteria optimal sizing of photovoltaic-wind turbine grid connected systems
,”
IEEE Trans. Energy Convers.
28
,
370
379
(
2013
).
4.
Australian Government Bureau of Meteorology
, http://www.bom.gov.au/watl/sunshine/ for Sunshine: Average Daily Sunshine Hours; accessed 24 April 2018 (
2005
).
5.
Beattie
,
N. S.
,
Moir
,
R. S.
,
Chacko
,
C.
,
Buffoni
,
G.
,
Roberts
,
S. H.
, and
Pearsall
,
N. M.
, “
Understanding the effects of sand and dust accumulation on photovoltaic modules
,”
Renewable Energy
48
,
448
452
(
2012
).
6.
Chander
,
S.
,
Purohit
,
A.
,
Sharma
,
A.
,
Nehra Arvind
,
S. P.
, and
Dhaka
,
M. S.
, “
A study on photovoltaic parameters of mono-crystalline silicon solar cell with temperature
,”
Energy Rep.
1
,
104
109
(
2015
).
7.
Chang
,
A. T. C.
and
Rango
,
A.
, https://nsidc.org/sites/nsidc.org/files/technical-references/amsr_atbd_snow.pdf for Algorithm Theoretical Basis Document (ATBD) for the AMSR-E Snow Water Equivalent Algorithm; accessed 10 September 2018 (
2000
).
8.
Chen
,
W.
and
Sopori
,
B.
, “
A thin silicon solar cell on glass: Cell design and process physics
,” in
Electrochemical Society'99
(
NREL
,
Seattle
,
1999
), pp.
1
8
.
9.
El-Shobokshy
,
M. S.
and
Hussein
,
F. M.
, “
Degradation of photovoltaic cell performance due to dust deposition on its surface
,”
Renewable Energy
3
,
585
590
(
1993
).
10.
Frouin
R.
,
Murakami
H.
, “
Estimating photosynthetically available radiation at the ocean surface from adeos-ii global imager data
,”
J. Oceanogr.
63
(3),
493
(
2007
).
11.
Gokmen
,
N.
,
Hu
,
W.
,
Hou
,
P.
,
Zhe
,
C.
,
Sera
,
D.
, and
Spataru
,
S.
, “
Investigation of wind speed cooling effect on PV panels in windy locations
,”
Renewable Energy
90
,
283
290
(
2016
).
12.
Goossens
,
D.
,
Offer
,
Z. Y.
, and
Zangvil
,
A.
, “
Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors
,”
Sol. Energy
50
,
75
84
(
1993
).
13.
Gupta
,
P.
,
Joiner
,
J.
,
Vasilkov
,
A.
, and
Bhartia
,
P. K.
, “
Top-of-the-atmosphere shortwave flux estimation from satellite observations: An empirical neural network approach applied with data from the A-train constellation
,”
Atmos. Meas. Tech.
9
,
2813
2826
(
2016
).
14.
Hall
,
D. K.
,
Riggs
,
G. A.
, and
Salomonson
,
V. V.
,
Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms
(
NASA
,
Greenbelt
,
2001
).
15.
Higurashi
,
A.
and
Nakajima
,
T.
, “
Development of a two-channel aerosol retrieval algorithm on a global scale using NOAA AVHRR
,”
J. Atmos. Sci.
56
,
924
941
(
1999
).
16.
Jin
,
M.
and
Dickinson
,
R. E.
, “
Land surface skin temperature climatology: Benefitting from the strength of satellite observations
,”
Environ. Res. Lett.
5
,
041002
(
2010
).
17.
Kim
,
J.-G.
,
Kim
,
D.-H.
,
Yoo
,
W.-S.
,
Lee
,
J.-Y.
, and
Kim
,
Y. B.
, “
Daily prediction of solar power generation based on weather forecast information in Korea
,”
IET Renewable Power Gener.
11
(
10
),
1268
1273
(
2017
).
18.
Kimber
,
A.
,
Mitchell
,
L.
,
Nogradi
,
S.
, and
Wenger
,
H.
, “
The effect of soiling on large grid-connected photovoltaic systems in California and the Southwest region of the United States
,” in
Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference
,
Waikoloa
(
2006
), pp.
2391
2395.
19.
Lee
,
S.
,
Kim
,
B.
,
Lee
,
K.
,
Zo
,
I.
,
Jung
,
H.
, and
Rim
,
S.
, “
Retrieval of reflected shortwave radiation at the top of the atmosphere using Himawari-8/AHI data
,”
Remote Sens.
10
(
2
),
1
25
(
2018
).
20.
Levy
,
R. C.
,
Mattoo
,
S.
,
Munchak
,
L. A.
,
Remer
,
L. A.
,
Sayer
,
A. M.
,
Patadia
,
F.
, and
Hsu
,
N. C.
, “
The collection 6 MODIS aerosol products over land and ocean
,”
Atmos. Meas. Tech.
6
,
2989
3034
(
2013
).
21.
Li
,
Z.
,
Guo
,
X.
,
Dixon
,
P.
, and
He
,
Y.
, “
Applicability of land surface temperature (LST) estimates from AVHRR satellite image composites in northern Canada
,”
Prairie Perspect.
11
,
119
130
(
2008
).
22.
Liu
,
B.
,
Li
,
K.
,
Niu
,
D. D.
,
Jin
,
Y. A.
, and
Liu
,
Y.
, “
The characteristic analysis of the solar energy photovoltaic power generation system
,”
IOP Conf. Ser.: Mater. Sci. Eng.
164
,
1
6
(
2017
).
23.
Menes-Rodrìguez
,
D.
,
Horley
,
P. P.
,
Gonzàlez-Hernàndez
,
J.
,
Vorobiev
,
Y. V.
, and
Gorley
,
P. N.
, “
Photovoltaic solar cell performance at elevated temperatures
,”
Sol. Energy
78
,
243
250
(
2005
).
24.
Mildrexler
,
D. J.
,
Zhao
,
M.
, and
Running
,
S. W.
, “
A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests
,”
J. Geophys. Res.
116
,
G03025
, (
2011
).
25.
NAIT
,
Alternative Energy Program: Solar Photovoltaic Reference Array Report
(
Northern Alberta Institute of Technology
,
Edmonton
,
2016
).
26.
Okamoto
,
K.
,
Iguchi
,
T.
,
Takahashi
,
N.
,
Iwanami
,
K.
, and
Ushio
,
T.
, “
The global satellite mapping of precipitation (GSMaP) project
,” in
25th IGARSS
,
Seoul
(
2005
).
27.
Paudyal
,
B. R.
and
Shree
,
R. S.
, “
Dust accumulation effects on efficiency of solar PV modules for off grid purpose: A case study of Kathmandu
,”
Sol. Energy
135
,
103
110
(
2016
).
28.
Perovich
,
D. K.
, “
Light reflection and transmission by a temperate snow cover
,”
J. Glaciol.
53
(
181
),
201
210
(
2007
).
29.
Principe
,
J.
and
Takeuchi
,
W.
, “
Assessment of solar PV power potential over Asia Pacific region with AHI8
,” in
26th Institute of Industrial Science (IIS) Forum
,
Tokyo
(
2018
).
30.
PVOutput.org
, https://pvoutput.org/ for PVOutput. PVOutput.org; accessed 23 April
2018
.
31.
REN21
,
Renewables 2017 Global Status Report
(
REN21 Secretariat
,
Paris
,
2017
).
32.
Sampaio
,
P. G. V.
and
Gonzalez
,
M. O. A.
, “
Photovoltaic solar energy: Conceptual framework
,”
Renewable Sustainable Energy Rev.
74
,
590
601
(
2017
).
33.
Sayigh
,
A. A. M.
, “
Effect of dust on flat plate collectors. Sun, mankind's future source of energy
,” in
Proceedings of the International Solar Energy Society Congress
,
New Delhi
(
1978
), pp.
960
964
.
34.
Sims
,
R. E. H.
,
Schock
,
R. N.
,
Adegbululgbe
,
A.
,
Fenhann
,
J.
,
Konstantinaviciute
,
I.
,
Moomaw
,
W.
,
Nimir
,
H. B.
, et al., “
Energy supply
,” in
Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
, edited by
B.
Metz
,
O. R.
Davidson
,
P. R.
Bosch
,
R.
Dave
, and
L. A.
Meyer
(
Cambridge University Press
,
Cambridge, UK
/New York, USA,
2007
).
35.
Thai Meteorological Department
, https://www.tmd.go.th/agromet.php for “
Agrometeorology
,” accessed 24 April 2018 (
2014
).
36.
The World Bank
, https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC for “
Electric power consumption (kWh per capita)
,” The World Bank Data; accessed 23 April 2018 (
2014
).
37.
US EIA
, https://www.eia.gov/outlooks/ieo/ for “
International Energy Outlook 2017
,” Independent Statistics and Analysis: US Energy Information Administration, accessed 23 March 2018 (
2017
).
38.
Wan
,
Z.
,
MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD)
(
Institute for Computational Earth System Science
,
Santa Barbara
,
1999
).
39.
Wu
,
S.
and
Xiong
,
C.
, “
Passive cooling technology for photovoltaic panels for domestic houses
,”
Int. J. Low-Carbon Technol.
9
(
2
),
118
126
(
2014
).
You do not currently have access to this content.