Load sharing is one of the main concerns in AC microgrids (MGs) which should be treated differently in the presence of photovoltaic (PV) sources. There are two modes of operation for photovoltaic sources, namely, maximum power point tracking (MPPT) mode and DC link voltage control (DCLV) mode. When the total load of MGs is higher than the maximum power of the photovoltaic source, the PV source operates in the MPPT mode, while other sources share the remaining loads; otherwise, it should reduce its power to provide a balance between the generation and load sides by operation in the DCLV mode. Here, a new seamless approach for sharing the load among a photovoltaic (PV) generation system and other sources is proposed based on a conventional droop control method that helps the PV source to locally select its control mode in AC MGs. The proposed method helps the MG to extract as much photovoltaic power as possible while balancing the generations and load sides. The proposed method is simulated in the MATLAB/SIMULINK environment, and the results validate the feasibility of the proposed method.

1.
J. M.
Guerrero
,
J. C.
Vasquez
,
J.
Matas
,
L. G. de
Vicuña
, and
M.
Castilla
, “
Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization
,”
IEEE Trans. Ind. Electron.
58
(
1
),
158
172
(
2011
).
2.
J. C.
Vasquez
,
J. M.
Guerrero
,
M.
Savaghebi
,
J.
Eloy-Garcia
, and
R.
Teodorescu
, “
Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters
,”
IEEE Trans. Ind. Electron.
60
(
4
),
1271
1280
(
2013
).
3.
U.
Borup
,
F.
Blaabjerg
, and
P. N.
Enjeti
, “
Sharing of nonlinear load in parallel-connected three-phase converters
,”
IEEE Trans. Ind. Appl.
37
(
6
),
1817
1823
(
2001
).
4.
M. R.
Patel
,
Wind and solar power system
, 2nd ed. (
Taylor & Francis
,
2005
), p.
472
.
5.
M. R.
Patel
,
Wind and solar power systems
, 2nd ed. (
Taylor & Francis
,
2006
).
6.
F. B. H. W.
Yongheng Yang
, “
Constant power generation of photovoltaic systems considering the distributed grid capacity
,” in
Applied Power Electronics Conference and Exposition
,
Fort Worth, TX, USA
,
2014
.
7.
A.
Bidram
and
A.
Davoudi
, “
Hierarchical structure of microgrids control system
,”
IEEE Trans. Smart Grid
3
(
4
),
1963
1976
(
2012
).
8.
M. H.
Khooban
,
T.
Niknam
,
M.
Shasadeghi
,
T.
Dragicevic
, and
F.
Blaabjerg
, “
Load frequency control in microgrids based on a stochastic noninteger controller
,”
IEEE Trans. Sustainable Energy
9
(
2
),
853
861
(
2018
).
9.
M. H.
Khooban
,
T.
Dragicevic
,
F.
Blaabjerg
, and
M.
Delimar
, “
Shipboard microgrids: A novel approach to load frequency control
,”
IEEE Trans. Sustainable Energy
9
(
2
),
843
852
(
2018
).
10.
R.
Noroozian
,
M.
Abedi
,
G.
Gharehpetian
, and
S.
Hosseini
, “
Combined operation of DC isolated distribution and PV systems for supplying unbalanced AC loads
,”
Renewable Energy
34
(
3
),
899
908
(
2009
).
11.
A.
Tofighi
and
M.
Kalantar
, “
Power management of PV/battery hybrid power source via passivity-based control
,”
Renewable Energy
36
(
9
),
2440
2450
(
2011
).
12.
X.
Liu
,
P.
Wang
, and
P. C.
Loh
, “
Optimal coordination control for stand-alone PV system with nonlinear load
,” in
IPEC 2010 Conference Proceedings
,
Singapore
,
2010
.
13.
S.
Chiang
,
H.-J.
Shieh
, and
M.-C.
Chen
, “
Modeling and control of PV charger system with SEPIC converter
,”
IEEE Trans. Ind. Electron.
56
(
11
),
4344
4353
(
2009
).
14.
N.
Eghtedarpour
and
E.
Farjah
, “
Control strategy for distributed integration of photovoltaic and energy storage systems in DC micro-grids
,”
Renewable Energy
45
,
96
110
(
2012
).
15.
T.
Dragicevi
,
J. M.
Guerrero
,
J. C.
Vasquez
, and
D.
Skrlec
, “
Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability
,”
IEEE Trans. Power Electron.
29
(
2
),
695
706
(
2014
).
16.
M. M.
Mardani
,
N.
Vafamand
,
M. H.
Khooban
,
T.
Dragicevic
, and
F.
Blaabjerg
, “
Design of quadratic D-stable fuzzy controller for DC microgrids with multiple CPLs
,”
IEEE Trans. Ind. Electron.
(published online).
17.
N.
Vafamand
,
M. H.
Khooban
,
T.
Dragičević
, and
F.
Blaabjerg
, “
Networked fuzzy predictive control of power buffers for dynamic stabilization of DC microgrids
,”
IEEE Trans. Ind. Electron.
66
(
2
),
1356
1362
(
2019
).
18.
R.
Mastromauro
,
M.
Liserre
,
A.
Dell'Aquila
,
J.
Guerrero
, and
J.
Vasquez
, “
Droop control of a multifunctional PV inverter
,” in
IEEE International Symposium on Industrial Electronics (ISIE)
,
Cambridge
,
2008
.
19.
C.
Trujillo Rodriguez
,
D.
Velasco de la Fuente
,
G.
Garcera
,
E.
Figueres
, and
J.
Guacaneme Moreno
, “
Reconfigurable control scheme for a PV microinverter working in both grid-connected and island modes
,”
IEEE Trans. Ind. Electron.
60
(
4
),
1582
1595
(
2013
).
20.
M. N.
Marwali
,
J.-W.
Jung
, and
A.
Keyhani
, “
Control of distributed generation systems-Part II: Load sharing control
,”
IEEE Trans. Power Electron.
19
(
6
),
1551
1561
(
2004
).
21.
Y. W.
Li
and
C.-N.
Kao
, “
An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid
,”
IEEE Trans. Power Electron.
24
(
12
),
2977
2988
(
2009
).
22.
T. L.
Vandoorn
,
B.
Renders
,
L.
Degroote
,
B.
Meersman
, and
L.
Vandevelde
, “
Active load control in islanded microgrids based on the grid voltage
,”
IEEE Trans. Smart Grid
2
(
1
),
139
151
(
2011
).
23.
X.
Wang
,
F.
Blaabjerg
, and
Z.
Chen
, “
Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid
,”
IEEE Trans. Ind. Appl.
50
(
1
),
452
461
(
2014
).
24.
M.
Dehghani
,
M. H.
Khooban
,
T.
Niknam
, and
S. M. R.
Rafiei
, “
Time-varying sliding mode control strategy for multibus low-voltage microgrids with parallel connected renewable power sources in islanding mode
,”
J. Energy Eng.
142
(
4
),
05016002
(
2016
).
25.
H.
Mahmood
,
D.
Michaelson
, and
J.
Jiang
, “
Strategies for independent deployment and autonomous control of PV and battery units in islanded microgrids
,”
IEEE J. Emerging Sel. Top. Power Electron.
3
(
3
),
742
755
(
2015
).
26.
Y.
Karimi
,
H.
Oraee
,
M.
Golsorkhi
, and
J. M. G.
Zapata
, “
Decentralized method for load sharing and power management in a PV/battery hybrid source islanded microgrid
,”
IEEE Trans. Power Electron.
32
(
5
),
3525
3535
(
2016
).
27.
Y.
Karimi
,
H.
Oraee
, and
J. M. G.
Zapata
, “
Decentralized method for load sharing and power management in a hybrid single/three-phase-islanded microgrid consisting of hybrid source PV/battery units
,”
IEEE Trans. Power Electron.
32
(
8
),
6135
6144
(
2016
).
28.
J. M.
Guerrero
,
J. C.
Vásquez
,
J.
Matas
,
M.
Castilla
, and
L. G. D.
Vicuña
, “
Control strategy for flexible microgrid based on parallel line-interactive UPS systems
,”
IEEE Trans. Ind. Electron.
56
(
3
),
726
736
(
2009
).
29.
G. M.
Azevedo
,
M. C.
Cavalcanti
,
F. A.
Neves
,
P.
Rodriguez
, and
J.
Rocabert
, “
Performance improvement of the droop control for single-phase inverters
,” in
2011 IEEE International Symposium on Industrial Electronics (ISIE)
,
2011
.
30.
Q.
Shafiee
,
J. M.
Guerrero
, and
J. C.
Vasquez
, “
Distributed secondary control for islanded microgrids-a novel approach
,”
IEEE Trans. Power Electron.
29
(
2
),
1018
1031
(
2014
).
31.
C. K.
Sao
and
W.
Lehn
, “
Autonomous load sharing of voltage source converters
,”
IEEE Trans. Power Delivery
20
,
1009
1016
(
2005
).
You do not currently have access to this content.