In the context of energy crisis, extensive depletion of fossil fuel, and climate change, the vertical-axis Savonius-type wind or hydrokinetic turbines appear to be promising candidates to extract energy from wind or free-flowing water because of their superior self-starting capability and design simplicity. The present investigation focuses on comparative analysis between Savonius wind turbines (SWTs) and Savonius hydrokinetic turbines (SHTs) at the same input power. To accomplish this, two configurations are considered, viz., 2-bladed and 3-bladed turbine designs having semicircular blade profiles. Experimental studies revealed that the SWTs operate in a slightly wider range of tip-speed ratios than the SHTs. It is also observed that, like SHTs, 2-bladed SWTs result in an improved (47%) peak power coefficient (CPmax) than 3-bladed SWTs. In line with this, the computational studies, conducted to complement the experimental analysis, showed the superiority of 2-bladed SWTs over the 3-bladed SWTs. Both experimental and computational analyses reveal that the SHTs and SWTs show identical drag and lift characteristics for given kinetic energy of the inlet fluid stream.

1.
J. V.
Akwa
,
H. A.
Vielmo
, and
A. P.
Petry
, “
A review on the performance of Savonius wind turbines
,”
Renewable Sustainable Energy Rev.
16
,
3054
3064
(
2012
).
2.
H. M. S. M.
Mazarbhuiya
,
A.
Biswas
, and
K. K.
Sharma
, “
Performance investigations of modified asymmetric blade H-Darrieus VAWT rotors
,”
J. Renewable Sustainable Energy
10
,
033302
(
2018
).
3.
J. P.
Abraham
,
B. D.
Plourde
,
G. S.
Mowry
,
W. J.
Minkowycz
, and
E. M.
Sparrow
, “
Summary of Savonius wind rotor development and future applications for smallscale power generation
,”
J. Renewable Sustainable Energy
4
(
4
),
042703
(
2012
).
4.
P. K.
Talukdar
,
V.
Kulkarni
, and
U. K.
Saha
, “
Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation
,”
Renewable Energy
127
,
158
167
(
2018
).
5.
O.
Ozgener
, “
A small wind turbine system (SWTS) application and its performance analysis
,”
Energy Convers. Manag.
47
,
1326
1337
(
2006
).
6.
K.
Mohammadi
and
A.
Mostafaeipour
, “
Economic feasibility of developing wind turbines in Aligoodarz, Iran
,”
Energy Convers. Manag.
76
,
645
653
(
2013
).
7.
S. J.
Savonius
, “
The S-rotor and its applications
,”
Mech. Eng.
53
(
5
),
333
338
(
1931
).
8.
I.
Al-Bahadly
, “
Building a wind turbine for rural home
,”
Energy Sustainable Dev.
13
,
159
165
(
2009
).
9.
J. L.
Menet
, “
A double-step Savonius rotor for local production of electricity: A design study
,”
Renewable Energy
29
,
1843
1862
(
2004
).
10.
U. K.
Saha
,
S.
Thotla
, and
D.
Maity
, “
Optimum design configuration of Savonius rotor through wind tunnel experiments
,”
J. Wind Eng. Ind. Aerodyn.
96
,
1359
1375
(
2008
).
11.
M. A.
Kamoji
,
S. B. S.
Kedare
, and
V.
Prabhu
, “
Performance tests on helical Savonius rotors
,”
Renewable Energy
34
,
521
529
(
2009
).
12.
R. E.
Sheldahl
,
B. F.
Blackwell
, and
L. V.
Feltz
, “
Wind tunnel performance data for two- and three-bucket Savonius rotors
,”
J. Energy
2
(
3
),
160
164
(
1978
).
13.
S.
Sivasegaram
, “
Secondary parameters affecting the performance of resistance-type vertical-axis wind rotors
,”
Wind Eng.
2
,
49
58
(
1978
).
14.
M. H.
Kahn
, “
Model and prototype performance characteristics of Savonius rotor windmill
,”
Wind Eng.
2
,
75
85
(
1978
).
15.
M. S. U. K.
Fernando
and
V. J.
Modi
, “
A numerical analysis of the unsteady flow past a Savonius wind turbine
,”
J. Wind Eng. Ind. Aerodyn.
32
,
303
327
(
1989
).
16.
I.
Ushiyama
and
H.
Nagai
, “
Optimum design configurations and performance of Savonius rotors
,”
Wind Eng.
12
,
59
75
(
1988
).
17.
M. A.
Kamoji
,
S. B.
Kedare
, and
S. V.
Prabhu
, “
Experimental investigations on single stage, two stage and three stage conventional Savonius rotor
,”
Int. J. Energy Res.
32
,
877
895
(
2008
).
18.
M. A.
Kamoji
,
S. B.
Kedare
, and
S. V.
Prabhu
, “
Experimental investigations on single stage modified Savonius rotor
,”
Appl. Energy
86
,
1064
1073
(
2009
).
19.
M.
Amiri
,
A. R.
Teymourtash
, and
M.
Kahrom
, “
Experimental and numerical investigations on the aerodynamic performance of a pivoted Savonius wind turbine
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
231
(
2
),
87
101
(
2016
).
20.
A.
Chauvin
and
D.
Benghrib
, “
Drag and lift coefficients evolution of a Savonius rotor
,”
Exp. Fluids
8
(
1-2
),
118
120
(
1989
).
21.
M. N. I.
Khan
,
M. T.
Iqbal
,
M.
Hinchey
, and
V.
Mase
, “
Performance of Savonius rotor as a water current turbine
,”
J. Ocean Technol.
4
(
2
),
71
83
(
2009
).
22.
M.
Nakajima
,
S.
Iio
, and
T.
Ikeda
, “
Performance of Savonius turbine for environmentally friendly hydraulic turbine
,”
J. Fluid Sci. Technol.
3
(
3
),
410
419
(
2008
).
23.
T.
Sawada
,
M.
Nahamura
, and
S.
Kamada
, “
Blade force measurement and flow visualization of Savonius rotors
,”
Bull. JSME
29
,
2095
2100
(
1986
).
24.
N. K.
Sarma
,
A.
Biswas
, and
R. D.
Misra
, “
Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power
,”
Energy Convers. Manag.
83
,
88
98
(
2014
).
25.
V.
Patel
,
G.
Bhat
,
T. I.
Eldho
, and
S. V.
Prabhu
, “
Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine
,”
Int. J. Energy Res.
41
(
6
),
829
844
(
2017
).
26.
S.
Roy
and
U. K.
Saha
, “
Review of experimental investigations into the design, performance and optimization of the Savonius rotor
,” Proc.
Inst. Mech. Eng. Part A: J. Power Energy
227
(
4
),
528
542
(
2013
).
27.
L.
Chen
,
J.
Chen
, and
Z.
Zhang
, “
Review of the Savonius rotor's blade profile and its performance
,”
J. Renewable Sustainable Energy
10
,
013306
(
2018
).
28.
A.
Kumar
and
R. P.
Saini
, “
Performance parameters of Savonius type hydrokinetic turbine: A review
,”
Renewable Sustainable Energy Rev.
64
,
289
310
(
2016
).
29.
B. D.
Plourde
,
J. P.
Abraham
,
G. S.
Mowry
, and
W. J.
Minkowycz
, “
An experimental investigation of a large, vertical-axis wind turbine: Effects of venting and capping
,”
Wind Eng.
35
,
213
220
(
2011
).
30.
B. D.
Altan
,
M.
Atilgan
, and
A.
Ozdamar
, “
An experimental study on improvement of a Savonius rotor performance with curtaining
,”
Exp. Therm. Fluid Sci.
32
,
1673
1678
(
2008
).
31.
S.
Roy
and
U. K.
Saha
, “
An adapted blockage factor correlation approach in wind tunnel experiments of a Savonius-style wind turbine
,”
Energy Convers. Manag.
86
,
418
427
(
2014
).
32.
M. H.
Mohamed
,
G.
Janiga
,
E.
Pap
, and
D.
Thevenin
, “
Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade
,” 
Energy Convers. Manag.
52
,
236
242
(
2011
).
33.
B.
Zhang
,
B.
Song
,
Z.
Mao
, and
W.
Tian
, “
A novel wake energy reuse method to optimize the layout for Savonius-type vertical axis wind turbines
,”
Energy
121
,
341
355
(
2017
).
34.
N.
Alom
and
U. K.
Saha
, “
Performance evaluation of vent-augmented elliptical-bladed Savonius rotors by numerical simulation and wind tunnel experiments
,”
Energy
152
,
277
290
(
2018
).
35.
M.
Shiono
,
K.
Suzuki
, and
S.
Kiho
, “
Output characteristics of Darrieus water turbine with helical blades for tidal current generations
,” in
Proceedings of the Twelfth International Offshore and Polar Engineering Conference
,
Kitakyushu, Japan
(
2002
), pp.
859
864
.
36.
P.
Marsh
,
D.
Ranmuthugala
,
I.
Penesis
, and
G.
Thomas
, “
Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines
,”
Renewable Energy
81
,
926
935
(
2015
).
37.
P. K.
Talukdar
,
A.
Sardar
,
V.
Kulkarni
, and
U. K.
Saha
, “
Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations
,”
Energy Convers. Manag.
158
,
36
49
(
2018
).
38.
P. K.
Talukdar
,
V.
Kulkarni
,
D.
Dehingia
, and
U. K.
Saha
, “
Evaluation of a model helical bladed hydrokinetic turbine characteristics from in-situ experiments
,” in
ASME 2017 11th International Conference on Energy Sustainability Paper No. ES2017-3490
,
Charlotte, NC, USA
,
June 26–30
,
2017
.
39.
B.
Altan
and
M.
Atilgan
, “
An experimental and numerical study on the improvement of the performance of Savonius wind rotor
,”
Energy Convers. Manag.
49
,
3425
3432
(
2008
).
40.
B.
Yang
and
C.
Lawn
, “
Fluid dynamic performance of a vertical axis turbine for tidal currents
,”
Renewable Energy
36
,
3355
3366
(
2011
).
41.
K.
Kacprzak
,
G.
Liskiewicz
, and
K.
Sobczak
, “
Numerical investigation of conventional and modified Savonius wind turbines
,”
Renewable Energy
60
,
578
585
(
2013
).
42.
J. P.
Abraham
,
B. D.
Plourde
,
G. S.
Mowry
,
E. M.
Sparrow
, and
W. J.
Minkowycz
, “
Numerical simulation of fluid flow around a vertical‐axis turbine
,”
J. Renewable Sustainable Energy
3
,
033109
(
2011
).
43.
B. D.
Plourde
,
J. P.
Abraham
,
G. S.
Mowry
, and
W. J.
Minkowycz
, “
Simulations of three‐dimensional vertical‐axis turbines for communications applications
,”
Wind Eng.
36
,
443
454
(
2012
).
44.
A.
Kumar
and
R. P.
Saini
, “
Performance analysis of a Savonius hydrokinetic turbine having twisted blades
,”
Renewable Energy
108
,
502
522
(
2017
).
45.
A.
Banerjee
,
S.
Roy
,
P.
Mukherjee
, and
U. K.
Saha
, “
Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbines
,” in
ASME Gas Turbine India Conference
, Paper No. GTINDIA 2014-8141,
New Delhi, India
,
December 15–17
,
2014
.
46.
S.
Roy
and
A.
Ducoin
, “
Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine
,”
Energy Convers. Manag.
121
,
281
296
(
2016
).
47.
M.
Nasef
,
W.
El-Askary
,
A.
AbdEL-Hamid
, and
H.
Gad
, “
Evaluation of Savonius rotor performance: Static and dynamic studies
,”
J. Wind Eng. Ind. Aerodyn.
123
,
1
11
(
2013
).
48.
S.
Roy
and
U. K.
Saha
, “
Review on the numerical investigations into the design and development of Savonius wind rotors
,”
Renewable Sustainable Energy Rev.
24
,
73
83
(
2013
).
49.
S. J.
Kline
and
F. A.
McClintock
, “
Describing uncertainties in single-sample experiments
,”
Mech. Eng.
75
,
3
8
(
1953
).
50.
R. J.
Moffat
, “
Describing the uncertainties in experimental results
,”
Exp. Therm. Fluid Sci.
1
(
1
),
3
17
(
1988
).
51.
N.
Fujisawa
and
F.
Gotoh
, “
Experimental study on the aerodynamic performance of a Savonius rotor
,”
J. Sol. Energy Eng.
116
(
3
),
148
152
(
1994
).
52.
A.
Sanusi
,
S.
Soeparman
,
S.
Wahyudi
, and
L.
Yuliati
, “
Experimental study of combined blade Savonius wind turbine
,”
Int. J. Renewable Energy Res.
6
(
2
),
614
619
(
2016
).
53.
P. N.
Shankar
, “
Development of vertical axis wind turbines
,”
Proc. Indian Acad. Sci.
C2
,
49
66
(
1979
).
54.
K. V.
Rabah
and
B. M.
Osawa
, “
Design and field testing of Savonius wind pump in east Africa
,” in International Report,
International Centre for Theoretical Physics, International Atomic Energy Agency and United Nations Educational Scientific and Cultural Organization
,
Trieste, Italy
,
1995
.
55.
A. J.
Alexander
and
B. P.
Holownia
, “
Wind tunnel tests on a Savonius rotor
,”
J. Wind Eng. Ind. Aerodyn.
3
(
4
),
343
351
(
1978
).
56.
M. H.
Ali
, “
Experimental comparison study for Savonius wind turbine of two and three blades at low wind speed
,”
Int. J. Mod. Eng. Res.
3
(
5
),
2978
2986
(
2013
).
57.
K.
Golecha
,
T. I.
Eldho
, and
S. V.
Prabhu
, “
Performance study of modified Savonius water turbine with two deflector plates
,”
Int. J. Rotating Mach.
2012,
679247
.
58.
L.
Chen
,
J.
Chen
,
H.
Xu
,
H.
Yang
,
C.
Ye
, and
D.
Liu
, “
Wind tunnel investigation on the two- and three-blade Savonius rotor with central shaft at different gap ratio
,”
J. Renewable Sustainable Energy
8
,
013303
(
2016
).
59.
K.
Irabu
and
J. N.
Roy
, “
Study of direct force measurement and characteristics on blades of Savonius rotor at static state
,”
Exp. Therm. Fluid Sci.
35
(
4
),
653
659
(
2011
).
60.
P.
Jaohindy
,
S.
McTavish
,
F.
Garde
, and
A.
Bastide
, “
An analysis of the transient forces acting on Savonius rotors with different aspect ratios
,”
Renewable Energy
55
,
286
295
(
2013
).
You do not currently have access to this content.