The thermo-economic evaluation of the dual pressure organic Rankine cycle system was presented based on the geothermal heat sources ranging from 100 to 180 °C. Two kinds of heat exchangers were selected to form four specific configuration layouts. The comparison between single and dual pressure systems was carried out. Moreover, the influence of economic parameters on cycle performance was analyzed. The electricity production cost (EPC), payback period (ppd), and saving-to-investment ratio are among the crucial considerations when the two stage evaporating pressures and pinch point temperatures are selected as independent variables. The results indicate that the dual pressure system possesses optimal EPC with the variation of low-evaporating pressure and the configuration layouts of type-FF and type-FP perform better. The cost of heat exchangers accounts for the largest proportion in the total cost of the system, followed by the expander. It can also be found that, for R1233zd, the average increasing rate of 20.87% in Wnet brings no economic benefits to the dual pressure system because the EPC also increases 12.98% averagely compared to the single pressure system. In addition, the impact of the annual loan interest rate, on-grid electricity price, and carbon tax of the system economic performance was discussed.

1.
C.
He
,
C.
Liu
,
M.
Zhou
,
H.
Xie
,
X.
Xu
,
S.
Wu
, and
Y.
Li
,
Energy
68
(
8
),
283
291
(
2014
).
2.
G.
Kosmadakis
,
D.
Manolakos
,
S.
Kyritsis
, and
G.
Papadakis
,
Renewable Energy
34
(
6
),
1579
1586
(
2009
).
3.
S.
Schimpf
and
R.
Span
,
Energy Convers. Manage.
94
,
430
437
(
2015
).
4.
M. H.
Yang
and
R. H.
Yeh
,
Renewable Energy
85
,
1201
1213
(
2016
).
5.
G.
Shu
,
G.
Yu
,
H.
Tian
,
H.
Wei
,
X.
Liang
, and
Z.
Huang
,
Energy Convers. Manage.
108
,
579
595
(
2016
).
6.
G.
Yu
,
G.
Shu
,
H.
Tian
,
H.
Wei
, and
X.
Liang
,
Energy Convers. Manage.
108
,
596
608
(
2016
).
7.
Y.
Huang
,
Y. D.
Wang
,
S.
Rezvani
,
D. R.
Mcilveen-Wright
,
M.
Anderson
,
J.
Mondol
,
A.
Zacharopolous
, and
N. J.
Hewitt
,
Appl. Therm. Eng.
53
(
2
),
325
331
(
2013
).
8.
M.
Uris
,
J. I.
Linares
, and
E.
Arenas
,
Renewable Energy
66
(
66
),
707
713
(
2014
).
9.
H.
Wang
,
J.
Xu
,
X.
Yang
,
Z.
Miao
, and
C.
Yu
,
Energy
86
,
59
73
(
2015
).
10.
E.
Huo
,
C.
Liu
,
X.
Xu
, and
C.
Dang
,
Int. J. Refrig.
83
,
118
130
(
2017
).
11.
X.
Dai
,
L.
Shi
,
Q.
An
, and
W.
Qian
,
J. Renewable Sustainable Energy
9
,
024702
(
2017
).
12.
Z.
Li
and
J.
Bao
,
Appl. Energy
130
(
8
),
748
756
(
2014
).
13.
C.
He
,
C.
Liu
,
H.
Gao
,
H.
Xie
,
Y.
Li
, and
S.
Wu
,
J. Renewable Sustainable Energy
6
(
3
),
033117
(
2014
).
14.
C.
Zhang
,
C.
Liu
,
X.
Xu
,
Q.
Li
,
S.
Wang
, and
X.
Chen
,
Energy
159
,
482
495
(
2018
).
15.
B.
Loeffler
and
E.
Whitney
,
J. Renewable Sustainable Energy
9
(
6
),
061707
(
2017
).
16.
C.
Zhang
,
C.
Liu
,
S.
Wang
,
X.
Xu
, and
Q.
Li
,
Energy
123
,
728
741
(
2017
).
17.
S.
Wang
,
C.
Liu
,
C.
Zhang
, and
X.
Xu
,
Appl. Therm. Eng.
141
,
1110
1119
(
2018
).
18.
H.
Xi
,
M. J.
Li
,
Y. L.
He
, and
Y.
Zhang
,
Appl. Therm. Eng.
113
,
1056
1070
(
2017
).
19.
V. L.
Le
,
A.
Kheiri
,
M.
Feidt
, and
S.
Pelloux-Prayer
,
Energy
78
,
622
638
(
2014
).
20.
Z.
Guzović
,
P.
Rašković
, and
Z.
Blatarić
,
Energy
76
(
76
),
175
186
(
2014
).
21.
J.
Ma
,
L.
Liu
,
T.
Zhu
, and
T.
Zhang
,
Appl. Therm. Eng.
107
,
218
226
(
2016
).
22.
B.
Liu
,
P.
Rivière
,
C.
Coquelet
,
R.
Gicquel
, and
F.
David
,
Appl. Energy
100
(
8
),
285
294
(
2012
).
23.
X.
Xue
,
C.
Guo
,
X.
Du
,
L.
Yang
, and
Y.
Yang
,
Energy
83
(
14
),
778
787
(
2015
).
24.
G.
Manente
,
A.
Lazzaretto
, and
E.
Bonamico
,
Energy
123
,
413
431
(
2017
).
25.
A.
Franco
and
M.
Villani
,
Geothermics
38
(
4
),
379
391
(
2009
).
26.
N.
Shokati
,
F.
Ranjbar
, and
M.
Yari
,
Renewable Energy
83
,
527
542
(
2015
).
27.
T.
Li
,
Z.
Zhang
,
J.
Lu
,
J.
Yang
, and
Y.
Hu
,
Appl. Energy
150
,
323
334
(
2015
).
28.
M.
Sadeghi
,
A.
Nemati
,
A.
Ghavimi
, and
M.
Yari
,
Energy
109
,
791
802
(
2016
).
29.
D. M.
Thierry
,
A.
Flores-Tlacuahuac
, and
I. E.
Grossmann
,
Comput. Chem. Eng.
89
,
106
126
(
2016
).
30.
C. E. C.
Rodríguez
,
J. C. E.
Palacio
,
O. J.
Venturini
,
E. E. S.
Lora
,
V. M.
Cobas
,
D. M. D.
Santos
,
F. R. L.
Dotto
, and
V.
Gialluca
,
Appl. Therm. Eng.
52
(
1
),
109
119
(
2013
).
31.
N. B.
Desai
and
S.
Bandyopadhyay
,
Energy
34
(
10
),
1674
1686
(
2009
).
32.
K.
Hu
,
J.
Zhu
,
W.
Zhang
,
K.
Liu
, and
X.
Lu
,
Appl. Therm. Eng.
111
,
793
801
(
2017
).
33.
F. Z.
Zhang
and
P. X.
Jiang
,
Appl. Therm. Eng.
48
(
48
),
476
485
(
2012
).
34.
Z.
Meng
,
H.
Zhang
,
M.
Lei
,
Y.
Qin
, and
J.
Qiu
,
Int. J. Heat Mass Transfer
116
,
362
370
(
2018
).
35.
E.
Lemmon
,
M.
Huber
, and
M.
McLinden
, see http://www.nist.gov/srd/nist23.cfm (
2013
).
36.
S.
Quoilin
,
S.
Declaye
,
B. F.
Tchanche
, and
V.
Lemort
,
Appl. Therm. Eng.
31
(
14
),
2885
2893
(
2011
).
37.
S.
Lecompte
,
H.
Huisseune
,
M. V. D.
Broek
,
S. D.
Schampheleire
, and
M. D.
Paepe
,
Appl. Energy
111
(
11
),
871
881
(
2013
).
38.
C.
Liu
,
C.
He
,
H.
Gao
,
H.
Xie
,
Y.
Li
,
S.
Wu
, and
J.
Xu
,
Energy
56
(
7
),
144
154
(
2013
).
39.
T.
Kuppan
,
Design manual for heat exchanger
(
China Petrochemical Press
,
2004
).
40.
J. R.
García-Cascales
,
F.
Vera-García
,
J. M.
Corberán-Salvador
, and
J.
Gonzálvez-Maciá
,
Int. J. Refrig.
30
(
6
),
1029
1041
(
2007
).
41.
V.
Gnielinski
,
Int. Chem. Eng.
16
(
2
),
359
368
(
1976
).
42.
K. E.
Gungor
and
R. H. S.
Winterton
,
Chem. Eng. Res. Des.
65
(
2
),
148
156
(
1987
).
43.
M. M.
Shah
,
Int. J. Heat Mass Transfer
22
(
4
),
547
556
(
1979
).
44.
R.
Turton
,
R. C.
Bailie
,
W. B.
Whiting
, and
J. A.
Shaeiwitz
,
Analysis, synthesis and design of chemical processes
(
Pearson Education
,
2008
)
45.
C.
Zhang
,
C.
Liu
,
X.
Xu
,
Q.
Li
, and
S.
Wang
,
Energy
168
,
332
345
(
2019
).
46.
J.
Zhao
and
H.
Wang
,
J. Tianjin Univ. (Sci. Technol.)
49
(
2
),
151
157
(
2016
).

Supplementary Material

You do not currently have access to this content.