The low efficiency of hydrolysis is usually the rate-limiting step in the anaerobic digestion of lignocellulosic substrates. In this investigation, bioaugmentation and pretreatment using the cellulolytic anaerobic bacterium Clostridium thermocellum have been found to be beneficial for the improvement of the hydrolysis of switchgrass and enhancing methane production. By adopting these two methods, the methane production of switchgrass reached 289.309 and 278.34 ml/g volatile solids, with an increase of 24.2% and 19.5%, respectively, compared to the blank group. The outcome of this study clearly indicated that the fermentation efficiency could be improved by the use of microorganisms in the above two methods. The methane yield of bioaugmentation not only was slightly higher than that of biopretreatment but also had a higher efficiency in terms of total time and was more adaptive to the industrial implementation. Moreover, this study proved that Clostridium thermocellum required about one week to acclimatize the anaerobic condition and the optimum adding time was at the beginning of anaerobic digestion.

1.
Ahamed
,
A.
and
Ahring
,
B. K.
, “
Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose
,”
Bioresour. Technol.
102
(
20
),
9718
9722
(
2011
).
2.
Anjum
,
M.
,
Khalid
,
A.
,
Mahmood
,
T.
, and
Aziz
,
I.
, “
Anaerobic co-digestion of catering waste with partially pretreated lignocellulosic crop residues
,”
J. Cleaner Prod.
117
,
56
63
(
2016
).
3.
Aydin
,
S.
, “
Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis
,”
Appl. Microbiol. Biotechnol.
100
(
12
),
5631
5637
(
2016
).
4.
Čater
,
M.
,
Fanedl
,
L.
,
Malovrh
,
Š.
, and
Logar
,
R. M.
, “
Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria
,”
Bioresour. Technol.
186
,
261
269
(
2015
).
5.
Chang
,
J.
,
Lin
,
J. J.
,
Ho
,
C. Y.
,
Chin
,
W. C.
, and
Huang
,
C. C.
, “
Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource
,”
Int. J. Hydrogen Energy
35
(
24
),
13399
13406
(
2010
).
6.
de Oliveira Gorgulho Silva
,
C.
and
Filho
,
E. X. F.
, “
A review of holocellulase production using pretreated lignocellulosic substrates
,”
BioEnergy Res.
10
,
592
602
(
2017
).
7.
Fotidis
,
I. A.
,
Wang
,
H.
,
Nicolai
,
R. F.
,
Luo
,
G.
,
Dimitar
,
B. K.
, and
Irini
,
A.
, “
Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate
,”
Environ. Sci. Technol.
48
(
13
),
7669
7676
(
2014
).
8.
Hendriks
,
A. T. W. M.
and
Zeeman
,
G.
, “
Pretreatments to enhance the digestibility of lignocellulosic biomass
,”
Bioresour. Technol.
100
(
1
),
10
18
(
2009
).
9.
Ho
,
C.
,
Chang
,
J. J.
,
Lin
,
J. J.
,
Chin
,
T. Y.
,
Mathew
,
G. M.
, and
Huang
,
C. C.
, “
Establishment of functional rumen bacterial consortia (FRBC) for simultaneous biohydrogen and bioethanol production from lignocellulose
,”
Int. J. Hydrogen Energy
36
(
19
),
12168
12176
(
2011
).
10.
Khalid
,
A.
,
Arshad
,
M.
,
Anjum
,
M.
,
Mahmood
,
T.
, and
Dawson
,
L.
, “
The anaerobic digestion of solid organic waste
,”
Waste Manage.
31
(
8
),
1737
1744
(
2011
).
11.
Kovács
,
K. L.
,
Ács
,
N.
,
Kovács
,
E.
,
Wirth
,
R.
,
Rákhely
,
G.
,
Strang
,
O.
,
Herbel
,
Z.
, and
Bagi
,
Z.
, “
Improvement of biogas production by bioaugmentation
,”
BioMed Res. Int.
2013
,
1
7
(
2013
).
12.
Lu
,
F.
,
Ji
,
J. Q.
, and
Shao
,
L. M.
, “
Bacterial bioaugmentation for improving methane and hydrogen production from microalgae
,”
Biotechnol. Biofuels
6
(
1
),
92
(
2013
).
13.
Ma
,
F.
,
Yang
,
N.
,
Xu
,
C. Y.
,
Yu
,
H. B.
,
Wu
,
J. G.
, and
Zhang
,
X. Y.
, “
Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth
,”
Bioresour. Technol.
101
(
24
),
9600
9604
(
2010
).
14.
Macias-Corral
,
M.
,
Zohrab
,
S.
,
Hanson
,
A.
,
Smith
,
G.
,
Funk
,
P.
,
Yu
,
H.
, and
Longworth
,
J.
, “
Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure
,”
Bioresour. Technol.
99
(
17
),
8288
8293
(
2008
).
15.
Nanda
,
S.
,
Azargohar
,
R.
,
Kozinski
,
J. A.
, and
Dalai
,
A. K.
, “
Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstock
,”
BioEnergy Res.
7
,
174
191
(
2014
).
16.
Ng
,
T. K.
and
Zeikus
,
J. G.
, “
Comparison of extracellular cellulase activities of Clostridiurm thermocellum LQRI and Trichoderma reesei QM9414
,”
Appl. Environ. Microbiol.
42
,
31
240
(
1981
).
17.
Nkemka
,
V. N.
,
Gilroyed
,
B.
,
Yanke
,
J.
,
Gruninger
,
R.
,
Vedres
,
D.
,
McAllister
,
T.
, and
Hao
,
X. Y.
,“
Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail
,”
Bioresour. Technol.
185
,
79
88
(
2015
).
18.
Pei
,
P.
,
Zhang
,
C. G.
,
Li
,
J. H.
,
Chang
,
A. D.
,
Li
,
S. Z.
,
Wang
,
J. L.
,
Zhao
,
M. X.
,
Jiang
,
L.
,
Yu
,
M. H.
, and
Chen
,
X. L.
, “
Optimization of NaOH pretreatment for enhancement of biogas production of banana pseudo-stem fiber using Response Surface Methodology
,”
Bioresources
9
(
3
),
5073
5087
(
2014
).
19.
Peng
,
X. W.
,
BÖrner
,
R. A.
,
Nges
,
I. A.
, and
Liu
,
J.
, “
Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum
,”
Bioresour. Technol.
152
,
567
571
(
2014
).
20.
Prapinagsorn
,
W.
,
Sittijunda
,
S.
, and
Reungsang
,
A.
, “
Co-digestion of napier grass and its silage with cow dung for bio-hydrogen and methane production by two-stage anaerobic digestion process
,”
Energies
11
(1),
47
(
2018
).
21.
Sawatdeenarunat
,
C.
,
Surendra
,
K. C.
,
Takara
,
D.
,
Oechsner
,
H.
, and
Khanal
,
S. K.
, “
Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities
,”
Bioresour. Technol.
178
,
178
186
(
2015
).
22.
Schwarz
,
W. H.
, “
The cellulosome and cellulose degradation by anaerobic bacteria
,”
Appl. Microbiol. Biotechnol.
56
(
5–6
),
634
649
(
2001
).
23.
Sharma
,
R.
,
Singhal
,
S.
,
Tiwari
,
A. K.
,
Agarwal
,
S.
,
Arora
,
S.
, and
Singhal
,
N.
, “
Influence of pretreatment processes onto bio-methanation of wheat straw
,”
J. Renewable Sustainable Energy
7
(
5
),
053109
(
2015
).
24.
Sørensen
,
A.
,
Lübeck
,
M.
,
Lübeck
,
P. S.
, and
Ahring
,
B. K.
, “
Fungal beta-glucosidases: A bottleneck in industrial use of lignocellulosic materials
,”
Biomolecules
3
(
4
),
612
631
(
2013
).
25.
Taniguchi
,
M.
,
Suzuki
,
H.
,
Watanabe
,
D.
,
Sakai
,
K.
,
Hoshino
,
K.
, and
Tanaka
,
T.
, “
Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw
,”
J. Biosci. Bioeng.
100
(
2
),
637
643
(
2005
).
26.
Tian
,
Y. L.
,
Zhang
,
H. Y.
,
Mi
,
X. Y.
,
Wang
,
L. J.
,
Zhang
,
L. Y.
, and
Ai
,
Y. J.
, “
Research on anaerobic digestion of corn stover enhanced by dilute acid pretreatment: Mechanism study and potential utilization in practical application
,”
J. Renewable Sustainable Energy
8
(
2
),
023103
(
2016
).
27.
Town
,
J. R.
and
Dumonceaux
,
T. J.
, “
Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters
,”
Appl. Microbiol. Biotechnol.
100
(
2
),
1009
1017
(
2016
).
28.
Tsapekos
,
P.
,
Kougias
,
P. G.
,
Vasileiou
,
S. A.
,
Treu
,
L.
,
Campanaro
,
S.
,
Lyberatos
,
G.
, and
Angelidaki
,
I.
, “
Bioaugmentation with hydrolytic microbes to improve the anaerobic biodegradability of lignocellulosic agricultural residues
,”
Bioresour. Technol.
234
,
350
359
(
2017
).
29.
Van Soest
,
P. J.
,
Robertson
,
J. B.
, and
Lewis
,
B. A.
, “
Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition
,”
J. Dairy Sci.
74
(10),
3583
(
1991
).
30.
Wan
,
C.
and
Li
,
Y.
, “
Fungal pretreatment of lignocellulosic biomass
,”
Biotechnol. Adv.
30
(
6
),
1447
1457
(
2012
).
31.
Wirth
,
R.
,
Kovács
,
E.
,
Maróti
,
G.
,
Bagi
,
Z.
,
Rákhely
,
G.
, and
Kovács
,
K.
, “
Characterization of a biogas- producing microbial community by short-read next generation DNA sequencing
,”
Biotechnol. Biofuels
5
,
41
(
2012
).
32.
Wu
,
C.
,
Zhou
,
H.
,
Yang
,
F.
,
Zhang
,
Y.
, and
Gao
,
F.
, “
Microwave pretreatments of switchgrass leaf and stem fractions to increase methane production
,”
Bioresources
10
(
3
), (
2015
).
33.
Yang
,
B.
and
Wyman
,
C. E.
, “
Pretreatment: The key to unlocking low-cost cellulosic ethanol
,”
Biofuels, Bioprod. Biorefin.
2
(
1
),
26
40
(
2008
).
34.
Yu
,
H.
,
Guo
,
G.
,
Zhang
,
X.
,
Yan
,
K.
, and
Xu
,
C.
, “
The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods
,”
Bioresour. Technol.
100
,
5170
5175
(
2009
).
35.
Yue
,
Z
,
Yu
,
H
,
Harada
,
H
, and
Li
,
Y
, “
Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures
,”
Water Res.
41
(11),
2361
(
2007
).
36.
Zhang
,
J.
,
Guo
,
R. B.
,
Qiu
,
Y. L.
,
Qiao
,
J. T.
,
Yuan
,
X. Z.
,
Shi
,
X. S.
, and
Wang
,
C. S.
, “
Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw
,”
Bioresour. Technol.
179
,
306
313
(
2015
).
37.
Zhang
,
R. H.
and
Zhang
,
Z. Q.
, “
Biogasification of rice straw with an anaerobic-phased system
,”
Bioresour. Technol.
68
,
235
245
(
1999
).
38.
Zhang
,
H.
,
Zhang
,
P. Y.
,
Ye
,
J.
,
Wu
,
Y.
,
Fang
,
W.
,
Gou
,
X. Y.
, and
Zeng
,
G. M.
, “
Improvement of methane production from rice straw with rumen fluid pretreatment: A feasibility study
,”
Int. Biodeterior. Biodegrad.
113
,
9
16
(
2016
).
39.
Zhao
,
R.
,
Zhang
,
Z.
,
Zhang
,
R.
,
Li
,
M.
,
Lei
,
Z.
,
Utsumi
,
M.
, and
Sugiura
,
N.
, “
Methane production from rice straw pretreated by a mixture of acetic–propionic acid
,”
Bioresour. Technol.
101
(
3
),
990
994
(
2010
).
You do not currently have access to this content.