Partial shading in a solar array deteriorates the maximum power generated owing to the voltage mismatch and current mismatch of the shaded solar PV module. Also, partial shading primes to multiple peaks in the P-V characteristics of the solar PV array and it has become more complex to track the Maximum Power Point (MPP). To enhance the maximum power generated by means of reducing mismatch losses, several reconfiguration techniques were suggested earlier. The mismatch losses depend not only on the amount of the area shaded but also on the shading pattern and array arrangement. This paper proposes a new pattern of positioning the PV module using the Latin square pattern without changing the total cross tied electrical connection. The proposed pattern disperses the shading uniformly within the given PV array which reduces mismatch losses significantly and increases the generation of power. The shade dispersion using proposed pattern also eliminates multiple peaks in its PV curve which enables the use of a simple algorithm to track MPP. This Latin square pattern is studied under different partial shading conditions, and the results exhibit improved performance under partial shading conditions.

1.
M. H.
Mohammadnezami
,
M. A.
Ehyaei
,
M. A.
Rosen
, and
M. H.
Ahmadi
, “
Meeting the electrical energy needs of a residential building with a wind-photovoltaic hybrid system
,”
Sustainability
7
(
3
),
2554
2569
(
2015
).
2.
A.
Maleki
,
F.
Pourfayaz
, and
M. H.
Ahmadi
, “
Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach
,”
Sol. Energy
139
,
666
675
(
2016
).
3.
Y.
Wang
,
H.
Li
,
H.
Hao
, and
X.
Chen
, “
Performance optimization of a photovoltaic solar cell-based hybrid system
,”
J. Renewable Sustainable Energy
10
,
1
10
(
2018
).
4.
J.
Shi
,
W.
Jen Lee
,
Y.
Liu
,
Y.
Yang
, and
P.
Wang
, “
Forecasting power output of photovoltaic system based on weather classification and support vector machine
,” in
IEEE Industry Applications Society Annual Meeting (lAS)
(
2011
), pp.
1
6
.
5.
G.
Petrone
,
G.
Spagnuolo
,
R.
Teodorescu
,
M.
Veerachary
, and
M.
Vitelli
, “
Reliability issues in photovoltaic power processing systems
,”
IEEE Trans. Ind. Electron.
55
(
7
),
2569
2280
(
2008
).
6.
N. J. C. M.
van der Borg
and
M. J.
Jansen
, “
Energy loss due to shading in a BIPV application
,” in
Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion
, Osaka, Japan (
2003
), Vol. 3, pp.
2220
2222
.
7.
M.
Drif
,
P. J.
Pérez
,
J.
Aguilera
, and
J. D.
Aguilar
, “
A new estimation method of irradiance on a partially shaded PV generator in grid-connected photovoltaic systems
,”
Renewable Energy
33
(
9
),
2048
2056
(
2008
).
8.
H.
Patel
and
V.
Agarwal
, “
Maximum power point tracking scheme for PV systems operating under partially shaded conditions
,”
IEEE Trans. Ind. Electron.
55
(
4
),
1689
1698
(
2008
).
9.
A.
Woytea
,
J.
Nijsa
, and
R.
Belmansa
, “
Partial shadowing of photovoltaic arrays with different system configurations: Literature review and field test results
,”
Sol. Energy
74
(
3
),
217
233
(
2003
).
10.
H.
Patel
and
V.
Agarwal
, “
Matlab based modeling to study the effects of partial shading on PV array characteristics
,”
IEEE Trans. Energy Convers.
23
(
1
),
302
310
(
2008
).
11.
V.
Salas
,
E.
Olias
,
A.
Barrado
, and
A.
Lazaro
, “
Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems
,”
Sol. Energy Mater. Sol. Cells
90
(
11
),
1555
1578
(
2006
).
12.
C.
Hua
,
J.
Lin
, and
C.
Chen
, “
Implementation of a DSP-controlled photovoltaic system with peak power tracking
,”
IEEE Trans. Ind. Electron.
45
(
1
),
99
107
(
1998
).
13.
N.
Fernia
,
G.
Petrone
,
G.
Spagnuolo
, and
M.
Vitelli
, “
Optimization of perturb and observe maximum power point tracking method
,”
IEEE Trans. Power Electron.
20
(
4
),
963
973
(
2005
).
14.
T.
Esram
,
J. W.
Kimball
,
P. T.
Krein
,
P. L.
Chapman
, and
P.
Midya
, “
Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control
,”
IEEE Trans. Power Electron.
21
(
5
),
1282
1291
(
2006
).
15.
E.
Koutroulis
and
F.
Blaabjerg
, “
A new technique for tracking the global maximum power point of PV arrays operating under partial shading conditions
,”
IEEE J. Photovoltaics
2
(
2
),
184
190
(
2012
).
16.
T. L.
Nguyen
and
K. S.
Low
, “
A global maximum power point tracking scheme employing direct search algorithm for photovoltaic systems
,”
IEEE Trans. Ind. Electron.
57
(
10
),
3456
3467
(
2010
).
17.
S.
Venkatesan
and
M.
Saravanan
, “
Simulation and experimental validation of new MPPT algorithm with direct control method for PV application
,”
J. Renewable Sustainable Energy
8
,
043503
(
2016
).
18.
Y.-H.
Ji
,
D.-Y.
Jung
,
J.-G.
Kim
,
J.-H.
Kim
, and
T.-W.
Lee
, “
A real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions
,”
IEEE Trans. Power Electron.
26
(
4
),
1001
1009
(
2011
).
19.
Z. M.
Salameh
and
F.
Dagher
, “
The effect of electrical array reconfiguration on the performance of a PV-powered volumetric water pump
,”
IEEE Trans. Energy Convers.
5
(
4
),
653
658
(
1990
).
20.
Z. M.
Salameh
and
C.
Liang
, “
Optimum switching points for array reconfiguration controller
,”
Proc. IEEE
2
,
971
976
(
1990
).
21.
G.
Velasco-Quesada
,
F.
Guinjoan-Gispert
,
R.
Pique-Lopez
,
M.
Roman-Lumbreras
, and
A.
Conesa-Roca
, “
Electrical PV array reconfiguration strategy for energy extraction improvement in grid connected systems
,”
IEEE Trans. Ind. Electron.
56
(
11
),
4319
4331
(
2009
).
22.
Z.
Cheng
,
Z.
Pang
,
Y.
Liu
, and
P.
Xue
, “
An adaptive solar photovoltaic array reconfiguration method based on fuzzy control
,” in
Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA)
(
2010
), pp.
176
181
.
23.
D.
Nguyen
and
B.
Lehman
, “
An adaptive solar photovoltaic array using model-based reconfiguration algorithm
,”
IEEE Trans. Ind. Electron.
55
(
7
),
2644
2654
(
2008
).
24.
Y.
Auttawaitkul
,
B.
Pungsiri
,
K.
Chammongthai
, and
M.
Okuda
, “
A method of appropriate electrical array reconfiguration management for photovoltaic powered car
,” in
Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems
(
1998
), pp.
201
204
.
25.
M. Z. S.
El-Dein
,
M.
Kazerani
, and
N. M. A.
Salama
, “
An optimal total cross tied interconnection for reducing mismatch losses in photovoltaic arrays
,”
IEEE Trans. Sustainable Energy
4
(
1
),
99
107
(
2013
).
26.
N. D.
Kaushika
and
A. K.
Rai
, “
An investigation of mismatch losses in solar photovoltaic cell networks
,”
Energy
32
(
5
),
755
759
(
2007
).
27.
N. D.
Kaushika
and
N. K.
Gautam
, “
Mismatch losses and time to failure of solar PV arrays
,” in
Proceedings of International Solar Energy Society Meeting
,
2001
.
28.
B.
Indu Rani
,
G.
Saravana Ilango
, and
C.
Nagamani
, “
Enhanced power generation from PV array under partial shading conditions by shade dispersion using Sudoku configuration
,”
IEEE Trans. Sustainable Energy
4
(
3
),
594
601
(
2013
).
29.
A.
Luque
and
S.
Hegedus
,
Hand Book of Photovoltaic Science and Engineering
(
Wiley
,
2011
).
You do not currently have access to this content.