In this paper, artificial neural networks (ANNs) have been used for the performance ratio modelling of four photovoltaic (PV) modules. The PV modules are selected from three different silicon technologies including one monocrystalline, two polycrystalline, and one micromorph (a-Si/μc-Si) modules. The adopted ANN architecture is a multilayer perceptron (MLP). The inputs of the ANN models are the solar irradiance on the PV module plane and air ambient temperature, while the output is the PV module performance ratio. It is shown that ANN models with three layers and five hidden neurons accurately model the performance ratio regardless of PV module technology. The results obtained from the ANN model are compared with those obtained from the five parameter model (L5P). The model comparison is done through two widely used forecasting errors: the root mean square error (RMSE) and the mean absolute percentage of error (MAPE). The values of both RMSE and MAPE are less than 0.02 for MLP based models and are about three to nine times lower than those obtained from the electrical model. It is also shown that the poor fit of the L5P model is due to the bad estimation of series and shunt resistances.
Skip Nav Destination
Article navigation
September 2018
Research Article|
October 23 2018
Artificial intelligence technique for estimating PV modules performance ratio under outdoor operating conditions
Alain K. Tossa;
Alain K. Tossa
1
KYA-Energy Group
, 08BP 81101 Agoenyivé, Lomé, Togo
2
LESEE-2iE, Laboratoire Energie Solaire et Economie d'Energie, Institut International d'Ingénierie de l'Eau et de l'Environnement
, 01 BP 594 Ouagadougou 01, Burkina Faso
Search for other works by this author on:
Y. M. Soro
;
Y. M. Soro
a)
2
LESEE-2iE, Laboratoire Energie Solaire et Economie d'Energie, Institut International d'Ingénierie de l'Eau et de l'Environnement
, 01 BP 594 Ouagadougou 01, Burkina Faso
a)Author to whom correspondence should be addressed: [email protected]. Tel.: (+226) 68 76 88 22. Fax: (+226) 25 49 28 01.
Search for other works by this author on:
Y. Coulibaly;
Y. Coulibaly
2
LESEE-2iE, Laboratoire Energie Solaire et Economie d'Energie, Institut International d'Ingénierie de l'Eau et de l'Environnement
, 01 BP 594 Ouagadougou 01, Burkina Faso
Search for other works by this author on:
Y. Azoumah;
Y. Azoumah
1
KYA-Energy Group
, 08BP 81101 Agoenyivé, Lomé, Togo
Search for other works by this author on:
Anne Migan-Dubois;
Anne Migan-Dubois
3
GeePs—Laboratoire Génie électrique et électronique de Paris
, 11, rue Joliot Curie, Plateau de Moulon, 91192 Gif sur Yvette Cedex, France
Search for other works by this author on:
L. Thiaw;
L. Thiaw
4
Ecole Supérieure Polytechnique de Dakar
, Corniche Ouest BP: 5085 Dakar-Fann, Senegal
Search for other works by this author on:
Claude Lishou
Claude Lishou
4
Ecole Supérieure Polytechnique de Dakar
, Corniche Ouest BP: 5085 Dakar-Fann, Senegal
Search for other works by this author on:
a)Author to whom correspondence should be addressed: [email protected]. Tel.: (+226) 68 76 88 22. Fax: (+226) 25 49 28 01.
J. Renewable Sustainable Energy 10, 053505 (2018)
Article history
Received:
May 30 2018
Accepted:
October 03 2018
Citation
Alain K. Tossa, Y. M. Soro, Y. Coulibaly, Y. Azoumah, Anne Migan-Dubois, L. Thiaw, Claude Lishou; Artificial intelligence technique for estimating PV modules performance ratio under outdoor operating conditions. J. Renewable Sustainable Energy 1 September 2018; 10 (5): 053505. https://doi.org/10.1063/1.5042217
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Efficient wind farm layout optimization with the FLOWERS AEP model and analytic gradients
Michael J. LoCascio, Christopher J. Bay, et al.
Improving academic–industry collaboration: A case study of UK distribution system operators
Jamie M. Bright, Hilal Ozdemir, et al.
Weather as a driver of the energy transition – present and emerging perspectives of energy meteorology
Marion Schroedter-Homscheidt, Jan Dobschinski, et al.
Related Content
Comparative performance testing of photovoltaic modules in tropical climates of Indonesia
AIP Conference Proceedings (February 2016)
Thin-film-based CdTe photovoltaic module characterization: Measurements and energy prediction improvement
Rev. Sci. Instrum. (January 2013)
The experimental analysis of solar PV system under techno-environmental uncertainty with MPPT evaluation
AIP Conf. Proc. (March 2024)
Assessment of losses in cadmium telluride and micromorph based thin film photovoltaic systems under real operating conditions
AIP Conf. Proc. (October 2020)
Optimization of absorber layers' thickness in a Si micromorph solar cell for current matching with intermediate ZnO reflector
J. Renewable Sustainable Energy (March 2013)