The main goal of this paper is the introduction of a predictive model to calculate the remaining run-time of a battery. It is not meant to increase precision or compete with other methods but to be a reliable model by using a new formulation, more representative of the active material used zones. This paper defines two different states of charge (SOC) based on the concepts of standard and available capacities, named SOCs and SOCav, respectively. Concepts such as uncharged and undischarged capacities and loss charge efficiency are included as well. With these new definitions, an estimation algorithm is proposed. It is implemented as a runtime SOC estimation model based on an ampère-hour counting electrical model. The characterization of SOC model parameters of an 11 Ah Ni-Cd battery is also presented. These tests combine non-standard charge or discharge processes with end-of-charge/discharge detection methods that avoid overcharge or over discharge. Four case studies are carried out: two on a single battery cell and the other two on a 210 battery stack. The results show a good performance, with an approximate improvement of the estimation of 5%. They also show the importance of differentiating standard and available SOC in order to calculate the available capacity.

1.
L.
Gao
,
S.
Liu
, and
R. A.
Dougal
, “
Dynamic lithium-ion battery model for system simulation
,”
IEEE Trans. Compon. Packag. Technol.
25
,
495
505
(
2002
).
2.
V.
Rao
,
G.
Singhal
,
A.
Kumar
, and
N.
Navet
, “
Battery model for embedded systems
,” in
18th International Conference on VLSI Design 2005
(
2005
), pp.
105
110
.
3.
C.
Chiasserini
and
R. R.
Rao
, “
Energy efficient battery management
,”
IEEE J. Sel. Areas Commun.
19
,
1235
1245
(
2001
).
4.
T.
Kim
and
W.
Qiao
, “
A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects
,”
IEEE Trans. Energy Convers.
26
,
1172
1180
(
2011
).
5.
S.
Piller
,
M.
Perrin
, and
A.
Jossen
, “
Methods for state-of-charge determination and their applications
,”
J. Power Sources
96
,
113
120
(
2001
).
6.
W.
Waag
,
C.
Fleischer
, and
D. U.
Sauer
, “
Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
,”
J. Power Sources
258
,
321
339
(
2014
).
7.
Y.
He
,
X.
Liu
,
C.
Zhang
, and
Z.
Chen
, “
A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries
,”
Appl. Energy
101
,
808
814
(
2013
).
8.
V.
Pop
,
H. J.
Bergveld
,
P. H. L.
Notten
, and
P. P. L.
Regtien
, “
State-of-the-art of battery state-of-charge determination
,”
Meas. Sci. Technol.
16
,
R93
R110
(
2005
).
9.
M.
Chen
and
G. A.
Rincon-Mora
, “
Accurate electrical battery model capable of predicting runtime and I-V performance
,”
IEEE Trans. Energy Convers.
21
,
504
511
(
2006
).
10.
J.
Gate
, http://www.sciencedirect.com/science/article/pii/B9780750670067500000 for Rechargeable Batteries Applications Handbook, Newnes, Newton,
1998
.
11.
M.
Garcia-Plaza
,
J. E. G.
Carrasco
, and
J.
Alonso-Martinez
, “
State of charge estimation model for Ni-Cd batteries considering capacity and efficiency
,” in
2015 IEEE International Conference on Industrial Technology, ICIT
(
2015
), pp.
1185
1190
.
12.
T. B.
Reddy
and
D.
Linden
,
Linden's Handbook of Batteries
, 4th ed. (
McGraw-Hill
,
New York
,
2011
).
13.
D. U.
Sauer
,
E.
Karden
,
B.
Fricke
,
H.
Blanke
,
M.
Thele
,
O.
Bohlen
,
J.
Schiffer
,
J. B.
Gerschler
, and
R.
Kaiser
, “
Charging performance of automotive batteries—An underestimated factor influencing lifetime and reliable battery operation
,”
J. Power Sources
168
,
22
30
(
2007
).
14.
J.
Diaz
,
J. A.
Martin-Ramos
,
A. M.
Pernia
,
F.
Nuno
, and
F. F.
Linera
, “
Intelligent and universal fast charger for Ni-Cd and Ni-MH batteries in portable applications
,”
IEEE Trans. Ind. Electron.
51
,
857
863
(
2004
).
15.
M.
Garcia-Plaza
,
J.
Eloy-Garcia Carrasco
, and
J.
Alonso-Martinez
,
State of charge estimation model for Ni-Cd batteries considering capacity and efficiency
, in
IEEE International Conferences on Industrial Technology
, ICIT (
2015
).
16.
D.
Doerffel
and
S. A.
Sharkh
, “
A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries
,”
J. Power Sources
155
,
395
400
(
2006
).
17.
W.
Peukert
, “
Über die Abhängigkeit der Kapazität von der Entladestromstärke beiBleiakkumulatorn
,”
Elektrotech. Z.
18
,
287
288
(
1897
).
18.
Y.
Yamaguchi
,
M.
Shiota
,
M.
Hosokawa
,
Y.
Nakayama
,
N.
Hirai
, and
S.
Hara
, “
Study of charge acceptance for the lead-acid battery through in situ EC-AFM observation—influence of the open-circuit standing time on the negative electrode
,”
J. Power Sources
102
,
155
161
(
2001
).
19.
M.
Thele
,
J.
Schiffer
,
E.
Karden
,
E.
Surewaard
, and
D. U.
Sauer
, “
Modeling of the charge acceptance of lead–acid batteries
,”
J. Power Sources
168
,
31
39
(
2007
).
20.
W. H.
Zhu
,
Y.
Zhu
,
Z.
Davis
, and
B. J.
Tatarchuk
, “
Energy efficiency and capacity retention of Ni–MH batteries for storage applications
,”
Appl. Energy
106
,
307
313
(
2013
).
21.
H.
Budde-Meiwes
,
D.
Schulte
,
J.
Kowal
,
D. U.
Sauer
,
R.
Hecke
, and
E.
Karden
, “
Dynamic charge acceptance of lead–acid batteries: Comparison of methods for conditioning and testing
,”
J. Power Sources
207
,
30
36
(
2012
).
22.
G. L.
Plett
, “
Part1. Background. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs
,”
J. Power Sources
134
,
252
261
(
2004
).
23.
G. L.
Plett
, “
Part2. Modeling and identification extended Kalman filtering for battery management systems of LiPB-based HEV battery packs
,”
J. Power Sources
134
,
262
276
(
2004
).
24.
G. L.
Plett
, “
Part3. State and parameter estimation. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs
,”
J. Power Sources
134
,
277
292
(
2004
).
25.
Z.
Chen
,
S.
Qiu
,
M. A.
Masrur
, and
Y. L.
Murphey
, “
Battery state of charge estimation based on a combined model of extended Kalman filter and neural networks
,” in
International Joint Conference on Neural Networks, IJCNN
(
2011
), pp.
2156
2163
.
26.
V.
Prajapati
,
H.
Hess
,
E. J.
William
,
V.
Gupta
,
M.
Huff
,
M.
Manic
,
F.
Rufus
,
A.
Thakker
, and
J.
Govar
, “
A literature review of state of-charge estimation techniques applicable to lithium poly-carbon monoflouride (LI/CFx) battery
,” in
India International Conference on Power Electronics, IICPE
(
2011
), pp.
1
8
.
27.
X.
Feng
,
H. B.
Gooi
, and
S. X.
Chen
, “
An improved lithium-ion battery model with temperature prediction considering entropy
,” in
3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technology, ISGT Europe
(
2012
), pp.
1
8
.
28.
H.
He
,
R.
Xiong
,
H.
Guo
, and
S.
Li
, “
Comparison study on the battery models used for the energy management of batteries in electric vehicles
,”
Energy Convers. Manage.
64
,
113
121
(
2012
).
29.
K. S.
Ng
,
C.-S.
Moo
,
Y.-P.
Chen
, and
Y.-C.
Hsieh
, “
Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries
,”
Appl. Energy
86
,
1506
1511
(
2009
).
30.
Y.
Shen
, “
Adaptive online state-of-charge determination based on neuro-controller and neural network
,”
Energy Convers. Manage.
51
,
1093
1098
(
2010
).
31.
M.
Verbrugge
and
E.
Tate
, “
Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena
,”
J. Power Sources
126
,
236
249
(
2004
).
32.
J.
Zhang
,
S.
Ci
,
H.
Sharif
, and
M.
Alahmad
, “
An enhanced circuit-based model for single-cell battery
,” in
2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition, APEC
(
2010
), pp.
672
675
.
33.
J.
Zhang
,
S.
Ci
,
H.
Sharif
, and
M.
Alahmad
, “
Modeling discharge behavior of multicell battery
,”
IEEE Trans. Energy Convers.
25
,
1133
1141
(
2010
).
34.
A.
Seaman
,
T.-S.
Dao
, and
J.
McPhee
, “
A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation
,”
J. Power Sources
256
,
410
423
(
2014
).
35.
S.
Abu-Sharkh
and
D.
Doerffel
, “
Rapid test and non-linear model characterisation of solid-state lithium-ion batteries
,”
J. Power Sources
130
,
266
274
(
2004
).
36.
D.
Andre
,
M.
Meiler
,
K.
Steiner
,
H.
Walz
,
T.
Soczka-Guth
, and
D. U.
Sauer
, “
Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling
,”
J. Power Sources
196
,
5349
5356
(
2011
).
37.
I.E. Commission
,
Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes. Vented Nickel-Cadmium Prismatic Rechargeable Single Cells
(
IEC
,
2001
), Vol. 60623, p.
2001
.
38.
M.
García-Plaza
,
D.
Serrano-Jiménez
,
J.
Eloy-García Carrasco
, and
J.
Alonso-Martínez
, “
A Ni–Cd battery model considering state of charge and hysteresis effects
,”
J. Power Sources
275
,
595
604
(
2015
).
39.
M.
Thele
,
O.
Bohlen
,
D. U.
Sauer
, and
E.
Karden
, “
Development of a voltage-behavior model for NiMH batteries using an impedance-based modeling concept
,”
J. Power Sources
175
,
635
643
(
2008
).
You do not currently have access to this content.