Significant efforts are being made to make natural gas processing energy-efficient and environmentally friendly by utilizing membrane based separation processes. While membranes (polymer/zeolite/metal-organic framework) are effective in separating CO2 and N2 from CH4, their separation performance is negatively affected when natural gas contains high concentrations of higher hydrocarbons (propane, butane, etc.) and H2S. Interestingly, higher hydrocarbons and H2S form gas (clathrate) hydrates at much milder conditions compared to CH4, CO2, and N2 and could thus act as a separation step before membranes. In this perspective, gas separation using membranes and gas hydrates is briefly reviewed, and the challenges of developing an integrated gas hydrate-membrane process are discussed. Such a process could be an energy efficient approach to reduce the costs associated with natural gas purification. The proposed system can also serve as a model for other challenging molecular gas separations relevant to the energy and environmental arenas, including flue gas treatment and hydrogen purification.

1.
R. W.
Baker
and
K.
Lokhandwala
, “
Natural gas processing with membranes: An overview
,”
Ind. Eng. Chem. Res.
47
,
2109
(
2008
).
2.
See http://naturalgas.org/overview/background for “
Overview of Natural Gas
” (last accessed March 6,
2018
).
3.
S. A.
Total
,
Sour Gas: A History of Expertise
(
The Know-How Series
,
France
,
2007
).
4.
R. W.
Spillman
, “
Economics of gas separation by membranes
,”
Chem. Eng. Prog.
85
,
41
(
1989
).
5.
H.
Ohya
,
V. V.
Kudryavsev
, and
S. I. S.
Semenova
,
Polyimide Membranes: Applications, Fabrications and Properties
(
CRC Press
,
1997
).
6.
R. W.
Baker
,
I.
Pinnau
,
Z.
He
,
K. D.
Amo
,
A. R.
DaCosta
, and
R.
Daniels
, “
Nitrogen gas separation using organic vapor resistant membranes
,” U.S. patent 6,579,341 B2 (June 17,
2003
).
7.
W. J.
Koros
and
R.
Mahajan
, “
Pushing the limits on possibilities for large scale gas separation: which strategies?
,”
J. Membr. Sci.
181
,
141
(
2001
).
8.
Y.
Alcheikhhamdon
and
M.
Hoorfar
, “
Natural gas purification from acid gases using membranes: A review of the history, features, techno-commercial challenges, and process intensification of commercial membranes
,”
Chem. Eng. Process.: Process Intensif.
120
,
105
(
2017
).
9.
C. A.
Scholes
,
G. W.
Stevens
, and
S. E.
Kentish
, “
Membrane gas separation applications in natural gas processing
,”
Fuel
96
,
15
(
2012
).
10.
G.
Gigi
,
N.
Bhoria
,
S.
AlHallaq
,
A.
Abdala
, and
V.
Mittal
, “
Polymer membranes for acid gas removal from natural gas
,”
Sep. Purif. Technol.
158
,
333
(
2016
).
11.
H.
Bux
,
F.
Liang
,
Y.
Li
,
J.
Cravillon
,
M.
Wiebcke
, and
J.
Caro
, “
Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis
,”
J. Am. Chem. Soc.
131
,
16000
(
2009
).
12.
S. R.
Venna
and
M. A.
Carreon
, “
Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation
,”
J. Am. Chem. Soc.
132
,
76
(
2010
).
13.
M. C.
McCarthy
,
V.
Varela-Guerrero
,
G. V.
Barnett
, and
H.-K.
Jeong
, “
Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures
,”
Langmuir
26
,
14636
(
2010
).
14.
Y.
Pan
and
Z.
Lai
, “
Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions
,”
Chem. Commun. (Cambridge)
47
,
10275
(
2011
).
15.
H.
Bux
,
A.
Feldhoff
,
J.
Cravillon
,
M.
Wiebcke
,
Y. S.
Li
, and
J.
Caro
, “
Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation
,”
Chem. Mater.
23
,
2262
(
2011
).
16.
S. R.
Venna
,
M.
Zhu
,
S.
Li
, and
M. A.
Carreon
, “
Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth
,”
J. Porous Mater.
21
,
235
(
2013
).
17.
V. V.
Guerrero
,
Y.
Yoo
,
M. C.
McCarthy
, and
H.-K.
Jeong
, “
HKUST-1 membranes on porous supports using secondary growth
,”
J. Mater. Chem.
20
,
3938
(
2010
).
18.
H.
Guo
,
G.
Zhu
,
I. J.
Hewitt
, and
S.
Qiu
, “
 “Twin copper source” growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2)
,”
J. Am. Chem. Soc.
131
,
1646
(
2009
).
19.
Y.
Liu
,
Z.
Ng
,
E. A.
Khan
,
H. K.
Jeong
,
C.
Ching
, and
Z.
Lai
, “
Synthesis of continuous MOF-5 membranes on porous α-alumina substrates
,”
Microporous Mesoporous Mater.
118
,
296
(
2009
).
20.
Y.
Hu
,
X.
Dong
,
J.
Nan
,
W.
Jin
,
X.
Ren
,
N.
Xu
, and
Y. M.
Lee
, “
Metal-organic framework membranes fabricated via reactive seeding
,”
Chem. Commun. (Cambridge)
47
,
737
(
2011
).
21.
A.
Bétard
,
H.
Bux
,
S.
Henke
,
D.
Zacher
,
J.
Caro
, and
A. A.
Fischer
, “
Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P]n on a macroporous support
,”
Microporous Mesoporous Mater.
150
,
76
(
2012
).
22.
S.
Aguado
,
C.-H.
Nicolas
,
V.
Moizan-Basle
,
C.
Nieto
,
H.
Amrouche
,
N.
Bats
,
N.
Auderbarnad
, and
D.
Ferrusseng
, “
Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2
,”
New J. Chem.
35
,
41
(
2011
).
23.
Y.-S.
Li
,
F. Y.
Liang
,
H.
Bux
,
A.
Feldhoff
,
W. S.
Yand
, and
J.
Caro
, “
Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity
,”
Angew. Chem. Int. Ed. Engl.
49
,
548
(
2010
).
24.
A.
Huang
,
H.
Bux
,
F.
Steinbach
, and
J.
Caro
, “
Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker
,”
Angew. Chem. Int. Ed. Engl.
49
,
4958
(
2010
).
25.
Y.
Liu
,
G.
Zeng
,
Y.
Pan
, and
Z.
Lai
, “
Synthesis of highly C-oriented ZIF-69 membranes by secondary growth and their gas permeation properties
,”
J. Membr. Sci.
379
,
46
(
2011
).
26.
A.
Huang
,
Y.
Chen
,
N.
Wang
,
Z.
Hu
,
J.
Jiang
, and
J.
Caro
, “
A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation
,”
Chem. Commun. (Cambridge)
48
,
10981
(
2012
).
27.
A. J.
Brown
,
J. R.
Johnson
,
M. E.
Lydon
,
W. J.
Koros
,
C. W.
Jones
, and
S.
Nair
, “
Continuous polycrystalline zeolitic imidazolate framework-90 Membranes on polymeric hollow fibers
,”
Angew. Chem. Int. Ed. Engl.
51
,
10615
(
2012
).
28.
A.
Huang
,
Q.
Liu
,
N.
Wang
, and
J.
Caro
, “
Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation
,”
Microporous Mesoporous Mater.
192
,
18
(
2014
).
29.
A.
Huang
and
J.
Caro
, “
Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity
,”
Angew. Chem. Int. Ed. Engl.
50
,
4979
(
2011
).
30.
A.
Huang
,
W.
Dou
, and
J.
Caro
, “
Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization
,”
J. Am. Chem. Soc.
132
,
15562
(
2010
).
31.
J. A.
Bohrman
and
M. A.
Carreon
, “
Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes
,”
Chem. Commun. (Cambridge)
48
,
5130
(
2012
).
32.
Z.
Xie
,
T.
Li
,
N. L.
Rosi
, and
M. A.
Carreon
, “
Alumina-supported cobalt–adeninate MOF membranes for CO2/CH4 separation
,”
J. Mater. Chem. A
2
,
1239
(
2014
).
33.
S. R.
Venna
and
M. A.
Carreon
, “
Metal organic framework membranes for carbon dioxide separation
,”
Chem. Eng. Sci.
124
,
3
(
2015
).
34.
J. C.
White
,
P. K.
Dutta
,
K.
Shqau
, and
H.
Verweij
, “
Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases
,”
Langmuir
26
,
10287
(
2010
).
35.
Y.
Cui
,
H.
Kita
, and
K.
Okamoto
, “
Preparation and gas separation performance of zeolite T membrane
,”
J. Mater. Chem.
14
,
924
(
2004
).
36.
D. W.
Shin
,
S. H.
Hyun
,
C. H.
Cho
, and
M. H.
Han
, “
Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes
,”
Microporous Mesoporous Mater.
85
,
313
(
2005
).
37.
H. H.
Funke
,
M. Z.
Chen
,
A. N.
Prakash
,
J. L.
Falconer
, and
R. D.
Noble
, “
Separating molecules by size in SAPO-34 membranes
,”
J. Membr. Sci.
456
,
185
(
2014
).
38.
E. W.
Ping
,
R.
Zhou
,
H. H.
Funke
,
J. L.
Falconer
, and
R. D.
Noble
, “
Seeded-gel synthesis of SAPO-34 single channel and monolith membranes for CO2/CH4 separations
,”
J. Membr. Sci.
415–416
,
770
(
2012
).
39.
R.
Zhou
,
E. W.
Ping
,
H. H.
Funke
,
J. L.
Falconer
, and
R. D.
Noble
, “
Improving SAPO-34 membrane synthesis
,”
J. Membr. Sci.
444
,
384
(
2013
).
40.
M. A.
Carreon
,
S.
Li
,
J. L.
Falconer
, and
R. D.
Noble
, “
SAPO-34 seeds and membranes prepared using multiple structure directing agents
,”
Adv. Mater.
20
,
729
(
2008
).
41.
M. A.
Carreon
,
S.
Li
,
J. L.
Falconer
, and
R. D.
Noble
, “
Alumina-supported SAPO-34 membranes for CO2/CH4 separation
,”
J. Am. Chem. Soc.
130
,
5412
(
2008
).
42.
S. R.
Venna
and
M. A.
Carreon
, “
Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation
,”
Langmuir
27
,
2888
(
2011
).
43.
J.
Van den Bergh
,
W.
Zhu
,
J.
Gascon
,
J. A.
Moulijn
, and
F.
Kapteijn
, “
Separation and permeation characteristics of a DD3R zeolite membrane
,”
J. Membr. Sci.
316
,
35
(
2008
).
44.
M. L.
Carreon
,
S.
Li
, and
M. A.
Carreon
, “
AlPO-18 membranes for CO2/CH4 separation
,”
Chem. Commun. (Cambridge)
48
,
2310
(
2012
).
45.
C.
Zhang
,
G. B.
Wenz
,
P. J.
Williams
,
J. M.
Mayne
,
G.
Liu
, and
W. J.
Koros
, “
Purification of aggressive supercritical natural gas using carbon molecular sieve hollow fiber membranes
,”
Ind. Eng. Chem. Res.
56
,
10482
(
2017
).
46.
G. B.
Wenz
and
W. J.
Koros
, “
Tuning carbon molecular sieves for natural gas separations: A diamine molecular approach
,”
AIChE J.
63
,
751
(
2017
).
47.
W. J.
Koros
and
C.
Zhang
, “
Materials for next-generation molecularly selective synthetic membranes
,”
Nat. Mater.
16
,
289
(
2017
).
48.
M. A.
Carreon
, “
Molecular sieve membranes for N2/CH4 separation
,”
J. Mater. Res.
33
,
32
(
2018
).
49.
L. M.
Robeson
, “
The upper bound revisited
,”
J. Membr. Sci.
320
,
390
(
2008
).
50.
X.
Ning
and
W. J.
Koros
, “
Carbon molecular sieve membranes derived from matrimid polyimide for nitrogen/methane separation
,”
Carbon
66
,
511
(
2014
).
51.
C.
Zhang
and
W. J.
Koros
, “
Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties
,”
Adv. Mater.
29
,
1701631
(
2017
).
52.
T.
Wu
,
M. C.
Diaz
,
Y.
Zheng
,
R.
Zhou
,
H. H.
Funke
,
J. L.
Falconer
, and
R. D.
Noble
, “
Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes
,”
J. Membr. Sci.
473
,
201
(
2015
).
53.
S. G.
Li
,
J. L.
Falconer
,
R. D.
Noble
, and
R.
Krishna
, “
Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the Maxwell-Stefan equations
,”
Ind. Eng. Chem. Res.
46
,
3904
(
2007
).
54.
S.
Li
,
Z.
Zong
,
S. J.
Zhou
,
Y.
Huang
,
Z.
Song
,
X.
Feng
,
R.
Zhou
,
H. S.
Meyer
,
M.
Yu
, and
M. A.
Carreon
, “
SAPO-34 membranes for N2/CH4 separation: Preparation, characterization, separation performance and economic evaluation
,”
J. Membr. Sci.
487
,
141
(
2015
).
55.
Z.
Zong
and
M. A.
Carreon
, “
Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation
,”
J. Membr. Sci.
524
,
117
(
2017
).
56.
Z.
Zong
,
X.
Feng
,
Y.
Huang
,
Z.
Song
,
R.
Zhou
,
S. J.
Zhou
,
M. A.
Carreon
,
M.
Yu
, and
S.
Li
, “
Highly permeable N2/CH4 separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature
,”
Microporous Mesoporous Mater.
224
,
36
(
2016
).
57.
Z.
Zong
,
S. K.
Elsaidi
,
P. K.
Thallapally
, and
M. A.
Carreon
, “
Highly permeable AlPO-18 membranes for N2/CH4 separation
,”
Ind. Eng. Chem. Res.
56
,
4113
(
2017
).
58.
S.
Li
,
G.
Alvarado
,
R. D.
Noble
, and
J. L.
Falconer
, “
Effects of impurities on CO2/CH4 separations through SAPO-34 membranes
,”
J. Membr. Sci.
251
,
59
(
2005
).
59.
C. A.
Scholes
,
S. E.
Kentish
, and
G. W.
Stevens
, “
Effect of minor components in carbon dioxide capture using polymeric gas separation membranes
,”
Sep. Purif. Rev.
38
,
1
(
2009
).
60.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
(
CRC Press
,
Boca Raton, FL
,
2008
).
61.
P.
Warrier
,
M. N.
Khan
,
V.
Srivastava
,
C. M.
Maupin
, and
C. A.
Koh
, “
Overview: Nucleation of clathrate hydrates
,”
J. Chem. Phys.
145
,
211705
(
2016
).
62.
J. L.
Creek
and
S.
Subramanian
, “
New method for managing hydrates in deepwater tiebacks
,” in
Offshore Technology Conference
,
Houston, Texas
,
2–5 May 2011
.
63.
C. A.
Koh
, “
Fundamentals and applications of gas hydrates
,”
Ann. Rev. Chem. Biomol. Eng.
2
,
237
(
2011
).
64.
T.
Takaoki
,
T.
Iwasaki
,
Y.
Katoh
,
T.
Arai
, and
K.
Horiguchi
, “
Use of hydrate pellets for transportation of natural gas-I-advantage of pellet form of natural gas hydrate in sea transportation
,” in
Proceedings of the 4th International Conference on Gas Hydrates
,
2002
.
65.
S.-P.
Kang
and
H.
Lee
, “
Recovery of CO2 from flue gas using gas hydrate: Thermodynamic verification through phase equilibrium measurements
,”
Environ. Sci. Technol.
34
,
4397
(
2000
).
66.
H. J.
Lee
,
J. D.
Lee
,
P.
Linga
,
P.
Englezos
,
Y. S.
Kim
,
M. S.
Lee
, and
Y. D.
Kim
, “
Gas Hydrate formation process for pre-combustion capture of carbon dioxide
,”
Energy
35
,
2729
(
2010
).
67.
M. D.
Max
and
R. E.
Pellenbarg
, “
Desalination through gas hydrate
,” U.S. patent US6,158,239 A (December 12,
2000
).
68.
H.
Dashti
,
L. Z.
Yew
, and
X.
Lou
, “
Recent advances in gas hydrate-based CO2 capture
,”
J. Nat. Gas Sci. Eng.
23
,
195
(
2015
).
69.
J. H.
van der Waals
and
J. C.
Platteeuw
, “
Clathrate solutions
,”
Adv. Chem. Phys.
2
,
1
(
1959
).
70.
S.
Li
,
S.
Fan
,
J.
Wang
,
X.
Lang
, and
Y.
Wang
, “
Clathrate hydrate capture of CO2 from simulated flue gas with cyclopentane/water emulsion
,”
Chin. J. Chem. Eng.
18
,
202
(
2010
).
71.
D. F.
Spencer
, “
Methods of selectively separating CO2 from a multicomponent gaseous stream
,” U.S. patent 6,106,595 (August 22,
2000
).
72.
J.
Zhang
,
P.
Yedlapalli
, and
J. W.
Lee
, “
Thermodynamic Analysis of hydrate-based pre-combustion capture of CO2
,”
Chem. Eng. Sci.
64
,
4732
(
2009
).
73.
P.
Linga
,
R.
Kumar
, and
P.
Englezos
, “
The clathrate hydrate process for post and pre-combustion capture of carbon dioxide
,”
J. Hazard. Mater.
149
,
625
(
2007
).
74.
P.
Linga
,
A.
Adeyemo
, and
P.
Englezos
, “
Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide
,”
Environ. Sci. Technol.
42
,
315
(
2008
).
75.
A.
Adeyemo
,
R.
Kumar
,
P.
Linga
,
J.
Ripmeester
, and
P.
Englezos
, “
Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column
,”
Int. J. Greenhouse Gas Control
4
,
478
(
2010
).
76.
L. C.
Ho
,
P.
Babu
,
R.
Kumar
, and
P.
Linga
, “
HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane
,”
Energy
63
,
252
(
2013
).
77.
M.
Ricaurte
,
C.
Dicharry
,
X.
Renaud
, and
J.-P.
Torré
, “
Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation
,”
Fuel
122
,
206
(
2014
).
78.
P.
Babu
,
P.
Linga
,
R.
Kumar
, and
P.
Englezos
, “
A review of the hydrate based gas separation (HBGS) Process for carbon dioxide pre-combustion capture
,”
Energy
85
,
261
(
2015
).
79.
I.
Cha
,
S.
Lee
,
J. D.
Lee
,
G.-W.
Lee
, and
Y.
Seo
, “
Separation of SF6 from gas mixtures using gas hydrate formation
,”
Environ. Sci. Technol.
44
,
6117
(
2010
).
80.
A.
Iizuka
,
S.
Hayashi
,
H.
Tajima
,
F.
Kiyono
,
Y.
Yanagisawa
, and
A.
Yamasaki
, “
Gas separation using tetrahydrofuran clathrate hydrate crystals based on the molecular sieving effect
,”
Sep. Purif. Technol.
139
,
70
(
2015
).
81.
D.-L.
Zhong
,
Y.-Y.
Lu
,
D.-J.
Sun
,
W.-L.
Zhao
, and
Z.
Li
, “
Performance evaluation of methane separation from coal mine gas by gas hydrate formation in a stirred reactor and in a fixed bed of silica sand
,”
Fuel
143
,
586
(
2015
).
82.
J.
Tang
,
D.
Zeng
,
C.
Wang
,
Y.
Chen
,
L.
He
, and
N.
Cai
, “
Study on the influence of SDS and THF on hydrate-based gas separation performance
,”
Chem. Eng. Res. Des.
91
,
1777
(
2013
).
83.
A.
Eslamimanesh
,
A. H.
Mohammadi
,
D.
Richon
,
P.
Naidoo
, and
D.
Ramjugernath
, “
Application of gas hydrate formation in separation processes: A review of experimental studies
,”
J. Chem. Thermodyn.
46
,
62
(
2012
).
84.
K.
Kroenlein
,
C. D.
Muzny
,
A.
Kazakov
,
V. V.
Diky
,
R. D.
Chirico
,
E. D.
Sloan
, and
M.
Frenkel
, http://gashydrates.nist.gov/ for “
Clathrate Hydrate Physical Property Database, NIST Standard Reference Database #156
” (last accessed June 03,
2018
).
85.
Z. T.
Ward
,
R. A.
Marriott
,
A. K.
Sum
,
E. D.
Sloan
, and
C. A.
Koh
, “
Equilibrium data of gas hydrates containing methane, propane, and hydrogen sulfide
,”
J. Chem. Eng. Data
60
,
424
(
2015
).
86.
A. L.
Ballard
and
E. D.
Sloan
, “
The next generation of hydrate prediction: Part III. Gibbs Energy minimization formalism
,”
Fluid Phase Equilib.
218
,
15
(
2004
).
87.
H.
Ohno
,
T. A.
Strobel
,
S. F.
Dec
,
E. D.
Sloan
, and
C. A.
Koh
, “
Raman studies of methane-ethane hydrate metastability
,”
J. Phys. Chem. A
113
,
1711
(
2009
).
88.
S.
Subramanian
,
R. A.
Kini
,
S. F.
Dec
, and
E. D.
Sloan
, “
Structural transition studies in methane + ethane hydrates using Raman and NMR
,”
Ann. N. Y. Acad. Sci.
912
,
873
(
2000
).
89.
B.
Song
,
A. H.
Nguyen
, and
V.
Molinero
, “
Can guest occupancy in binary clathrate hydrates be tuned through control of the growth temperature?
,”
J. Phys. Chem. C
118
,
23022
(
2014
).
You do not currently have access to this content.