The estimation of state of charge (SOC) requires the tradeoff between high accuracy and robustness in the design of the battery management system. There are varieties of studies being carried out around this issue, aiming to balance the model complication, algorithm complexity, estimation accuracy, as well as robustness. In this work, in order to solve the SOC estimation problem under real complex working conditions, we introduce a strategy that combines battery modeling tactics and algorithm developing techniques to make it. In detail, we employ a combined model and build discrete state-space equations based on it. For improving the estimation accuracy, we use the recursive least squares method with forgetting factor to identify the parameters of the model. The particle filter embedded genetic algorithm is employed for SOC estimation, which overcomes the particle degradation and diversity loss for further enhancing the accuracy and robustness of estimation. Finally, real road test data is applied to investigate the estimation performance of the developed SOC estimation strategy.

1.
H.
Rahimi-Eichi
,
U.
Ojha
,
F.
Baronti
, and
M.
Chow
,
IEEE Ind. Electron. Mag.
7
(
2
),
4
(
2013
).
2.
H.
He
,
R.
Xiong
, and
H.
Guo
,
Appl. Energy
89
,
413
(
2012
).
3.
C.
Burgos-Mellado
,
M. E.
Orchard
,
M.
Kazerani
,
R.
Cárdenas
, and
D.
Sáez
,
Appl. Energy
161
,
349
(
2016
).
4.
M. A.
Hannan
,
M. S. H.
Lipu
,
A.
Hussain
, and
A.
Mohamed
,
Renewable Sustainable Energy Rev.
78
,
834
(
2017
).
5.
Y.
Xing
,
W.
He
,
M.
Pecht
, and
K. L.
Tsui
,
Appl. Energy
113
,
106
(
2014
).
6.
L.
Zhao
,
M.
Lin
, and
Y.
Chen
,
Int. J. Energy Res.
40
,
1389
(
2016
).
7.
H.
Wang
,
Y.
Liu
,
H.
Fu
, and
G.
Li
,
Int. J. Control Autom.
6
,
185
(
2013
), see http://www.sersc.org/journals/IJCA/vol6_no2/17.pdf.
9.
L.
Zheng
,
L.
Zhang
,
J.
Zhu
,
G.
Wang
, and
J.
Jiang
,
Appl. Energy
180
,
424
(
2016
).
10.
W.
He
,
N.
Williard
,
C.
Chen
, and
M.
Pecht
,
Int. J. Electr. Power Energy Syst.
62
,
783
(
2014
).
11.
Z.
Chen
,
Y.
Fu
, and
C. C.
Mi
,
IEEE Trans. Veh. Technol.
62
,
1020
(
2013
).
12.
W.
He
,
N.
Williard
,
C.
Chen
, and
M.
Pecht
,
Microelectron. Rel.
53
,
840
847
(
2013
).
13.
S.
Schwunk
,
N.
Armbruster
,
S.
Straub
,
J.
Kehl
, and
M.
Vetter
,
J. Power Sources
239
,
705
(
2013
).
14.
Y.
He
,
X.
Liu
,
C.
Zhang
, and
Z.
Chen
,
Appl. Energy
101
,
808
(
2013
).
15.
G.
Jamie
,
N.
Ruben
,
E. K.
Egwu
,
P. Z.
Jim
, and
H. W.
Mark
,
J. Power Sources
196
,
4826
(
2011
).
16.
A.
Vasebi
,
M.
Partovibakhsh
, and
S. M. T.
Bathaee
,
J. Power Sources
174
,
30
(
2007
).
17.
J.
Li
,
J.
Klee Barillas
,
C.
Guenther
, and
M. A.
Danzer
,
J. Power Sources
247
,
156
(
2014
).
18.
L.
Zhi
,
Z.
Peng
,
W.
Zhifu
,
S.
Qiang
, and
R.
Yinan
,
Energy Procedia
105
,
3515
(
2017
).
19.
I.
Blooma
,
B. W.
Colea
,
J. J.
Sohna
,
S. A.
Jonesa
,
E. G.
Polzina
,
V. S.
Battagliaa
,
G. L.
Henriksena
,
C.
Motlochb
,
R.
Richardsonb
,
T.
Unkelhaeuserc
,
D.
Ingersollc
, and
H. L.
Casec
,
J. Power Sources
101
(
2
),
238
(
2001
).
20.
B.
Saha
,
K.
Goebel
,
S.
Poll
, and
J.
Christophersen
,
IEEE Trans. Instrum. Meas.
58
,
291
(
2009
).
21.
B.
Xia
,
Z.
Sun
,
R.
Zhang
,
D.
Cui
,
Z.
Lao
,
W.
Wang
,
W.
Sun
,
Y.
Lai
, and
M.
Wang
,
Energies
10
,
1149
(
2017
).
22.
S.
Shao
,
J.
Bi
,
F.
Yang
, and
W.
Guan
,
Transp. Res. Part D: Transp. Environ.
32
,
207
(
2014
).
23.
C.
Wutthipong
, in
IEEE International Conference on Computer Science and Automation Engineering
(
2013
), p.
275
.
24.
C.
Chen
,
R.
Xiong
, and
W.
Shen
,
IEEE Trans. Power Electron.
33
,
332
(
2018
).
25.
Y.
Wang
,
C.
Zhang
, and
Z.
Chen
,
Appl. Energy
185
,
2026
(
2017
).
26.
G. L. J.
Meng
and
F.
Gao
,
IEEE Trans. Power Electron.
31
(
3
),
2226
2238
(
2016
).
27.
G. L.
Plett
,
J. Power Sources
161
,
1356
(
2006
).
28.
G. L.
Plett
,
J. Power Sources
134
,
262
(
2004
).
29.
S. K.
Rahimian
,
S.
Rayman
, and
R. E.
White
,
J. Electrochem. Soc.
159
,
A860
(
2012
).
30.
Y.
Hu
,
S.
Yurkovich
,
Y.
Guezennec
, and
B. J.
Yurkovich
,
J. Power Sources
196
,
449
(
2011
).
31.
M.
Srinivas
and
L. M.
Patnaik
,
IEEE Trans. Syst., Man, Cybern.
24
,
656
(
1994
).
32.
QC/T74322006,
Lithium-Ion Batteries for Electric Road Vehicles
(
Standard
,
2006
).

Supplementary Material

You do not currently have access to this content.