In this work, four artificial intelligence (AI) techniques, based on Artificial Neural Networks, Support Vector Machine (SVM), and Regression Tree Ensembles, were used to estimate the operating temperature of photovoltaic (PV) modules (TPV). The models' input parameters correspond to experimental measurements of environmental (solar radiation, ambient temperature, relative humidity, wind speed, and wind direction) and operational (power output and tracking system) variables. Several AI models were trained and statistically compared with the measured data using a computational methodology that determines the performance and accuracy of the AI technique. Finally, a global sensitivity analysis was conducted to identify the ability of each technique to reflect the physical coherence of the phenomenon that is under study. It is reported that the four techniques can provide an estimate having a precision of about 93%. On the other hand, the sensitivity analysis demonstrates that all the models cannot correctly interpret the physical interaction of the input parameters with respect to TPV, where the SVM is reported to be the most appropriate. The results indicate that the proposed methodology is a viable alternative for the estimation of TPV by AI techniques. This methodology can be implemented as an alternative tool in the development of smart PV module cooling systems to improve its performance and to reduce its operating costs.

1.
A. M.
Humada
,
M.
Hojabri
,
H. M.
Hamada
,
F. B.
Samsuri
, and
M. N.
Ahmed
,
Energy Build.
119
,
233
(
2016
).
2.
M. M.
Fouad
,
L. A.
Shihata
, and
E. I.
Morgan
,
Renewable Sustainable Energy Rev.
80
,
1499
(
2017
).
3.
V.
Andreev
and
V.
Grilikhes
,
Photovoltaic Conversion of Concentrated Sunlight
(
Wiley
,
1997
), Vol.
866
, pp.
565
566
.
4.
A.
Shukla
,
K.
Kant
,
A.
Sharma
, and
P. H.
Biwole
,
Sol. Energy Mater. Sol. Cells
160
,
275
(
2017
).
5.
M. M.
Rahman
,
M.
Hasanuzzaman
, and
N. A.
Rahim
,
J. Cleaner Prod.
143
,
912
(
2017
).
6.
M.
Hasanuzzaman
,
A. B.
Malek
,
M. M.
Islam
,
A. K.
Pandey
, and
N. A.
Rahim
,
Sol. Energy
137
,
25
(
2016
).
7.
J.
Siecker
,
K.
Kusakana
, and
B. P.
Numbi
,
Renewable Sustainable Energy Rev.
79
,
192
(
2017
).
8.
S.
Nižetić
,
A. M.
Papadopoulos
, and
E.
Giama
,
Energy Convers. Manage.
149
,
334
(
2017
).
9.
S.
Nižetić
,
E.
Giama
, and
A. M.
Papadopoulos
,
Energy Convers. Manage.
155
,
301
(
2018
).
10.
H. M.
Bahaidarah
,
A. A.
Baloch
, and
P.
Gandhidasan
,
Renewable Sustainable Energy Rev.
57
,
1520
(
2016
).
11.
C.
Coskun
,
U.
Toygar
,
O.
Sarpdag
, and
Z.
Oktay
,
J. Cleaner Prod.
164
,
1474
(
2017
).
12.
G. H.
Yordanov
,
O. M.
Midtgård
, and
T. O.
Saetre
,
Renewable Energy
46
,
72
(
2012
).
13.
E.
Skoplaki
and
J. A.
Palyvos
,
Sol. Energy
83
,
614
(
2009
).
14.
T. R.
Ayodele
,
A. S. O.
Ogunjuyigbe
, and
C. G.
Monyei
,
J. Renewable Sustainable Energy
8
,
023702
(
2016
).
15.
A.
Torres-Barrán
,
Á.
Alonso
, and
J.
Dorronsoro
,
Neurocomputing
0
,
1
(
2017
) .
16.
Á.
Fernández
,
Y.
Gala
, and
R.
Dorronsoro
, in
Proceedings of ECML/PKDD
(
2014
).
17.
E.
Cruz May
,
L. J.
Ricalde
,
E. J. R.
Atoche
,
A.
Bassam
, and
E. N.
Sanchez
, in
Proceedings of Intelligent Computing Systems
(
2018
), Vol. 820, pp.
81
96
.
18.
R. V.
Monteiro
,
G. C.
Guimarães
,
F. A.
Moura
,
M. R.
Albertini
, and
M. K.
Albertini
,
Electr. Power Syst. Res.
143
,
643
(
2017
).
19.
S. K.
Jha
,
J.
Bilalovic
,
A.
Jha
,
N.
Patel
, and
H.
Zhang
,
Renewable Sustainable Energy Rev.
77
,
297
(
2017
).
20.
Y.-H.
Liu
,
C.-L.
Liu
,
J.-W.
Huang
, and
J.-H.
Chen
,
Sol. Energy
89
,
42
(
2013
).
21.
S. I.
Sulaiman
,
N. Z.
Zainol
,
Z.
Othman
, and
H.
Zainuddin
, in
Proceedings of 2014 International Conference on Modelling, Identification, and Control; ICMIC 2014
(
2015
), pp.
306
309
.
22.
I.
Ceylan
,
O.
Erkaymaz
,
E.
Gedik
, and
A. E.
Gurel
,
Case Stud. Therm. Eng.
3
,
11
(
2014
).
23.
J.
Tziu Dzib
,
E. J.
Alejos Moo
,
A.
Bassam
,
M.
Flota-Bañuelos
,
M.
Escalante Soberanis
,
L. J.
Ricalde
, and
M. J.
López-Sánchez
, in
Proceedings of Intelligent Computing Systems
(
2016
), Vol.
597
, pp.
46
60
.
24.
Y.
Sun
,
F.
Wang
,
Z.
Mi
,
H.
Sun
,
C.
Liu
,
B.
Wang
,
J.
Lu
,
Z.
Zhen
, and
K.
Li
, in
International Conference on Renewable Power Generation (RPG 2015)
(
2015
), pp.
1
6
.
25.
X.
Cheng
,
F.
Chen
,
B.
Yu
, and
X.
Zhang
, in
2016 China International Conference on Electricity Distribution
(
2016
), pp.
1
5
.
26.
J.
Polo
,
S.
Garcia-Bouhaben
, and
M. C.
Alonso-García
,
J. Renewable Sustainable Energy
8
,
053501
(
2016
).
27.
M.
Jankovec
and
M.
Topič
,
J. Sol. Energy Eng.
135
,
031012
(
2013
).
28.
B.
Marion
,
J.
Adelstein
,
K.
Boyle
,
H.
Hayden
,
B.
Hammond
,
T.
Fletcher
,
B.
Canada
,
D.
Narang
,
A.
Kimber
,
L.
Mitchell
,
G.
Rich
, and
T.
Townsend
, in
31st IEEE PVSC
(
2005
), Vol.
7533
, pp.
1601
1606
.
29.
V.
Quaschning
,
Understanding Renewable Energy Systems
(
Earthscan
,
2005
).
30.
A.
Abiola-Ogedengbe
,
H.
Hangan
, and
K.
Siddiqui
,
Renewable Energy
78
,
657
(
2015
).
31.
S.
Mekhilef
,
R.
Saidur
, and
M.
Kamalisarvestani
,
Renewable Sustainable Energy Rev.
16
,
2920
(
2012
).
32.
O.
May Tzuc
,
A.
Bassam
,
M. A.
Escalante Soberanis
,
E.
Venegas-Reyes
,
O. A.
Jaramillo
,
L. J.
Ricalde
,
E. E.
Ordoñez
, and
Y.
El Hamzaoui
,
J. Renewable Sustainable Energy
9
,
013701
(
2017
).
33.
R.
Mejdoul
,
M.
Taqi
, and
N.
Belouaggadia
,
J. Renewable Sustainable Energy
5
,
063137
(
2013
).
34.
O.
May Tzuc
,
A.
Bassam
,
M.
Flota-Bañuelos
,
E. E.
Ordoñez
,
L.
Ricalde-Cab
,
R.
Quijano
, and
A. E.
Vega Pasos
, in
Proceedings of Intelligent Computing Systems
(
Springer International
,
Mérida, Yucatán
,
2016
), Vol.
4113
, pp.
61
73
.
35.
M. H.
Beale
,
M. T.
Hagan
, and
H. B.
Demuth
,
MathWorks
(
The MathWorks, Inc.
,
2017
), p.
446
.
36.
P. I.
Viñuela
and
I. M. G.
León
,
Redes De Neuronas Artificiales: Un Enfoque Práctico
(
Pearson Educación
,
2004
).
37.
J. A.
Muñoz Rodríguez
,
A.
Asundi
, and
R.
Rodríguez Vera
,
Rev. Mex. Fis.
50
,
453
(
2004
).
38.
A.
Shabri Suhartono
,
Hydrol. Sci. J.
57
,
1275
(
2012
).
39.
O.
Kisi
,
J.
Shiri
,
S.
Karimi
,
S.
Shamshirband
,
S.
Motamedi
,
D.
Petković
, and
R.
Hashim
,
Appl. Math. Comput.
270
,
231
(
2015
).
40.
S. M.
Clarke
,
J. H.
Griebsch
, and
T. W.
Simpson
,
J. Mech. Des.
127
,
1077
(
2005
).
41.
S.
Baziar
,
H. B.
Shahripour
,
M.
Tadayoni
, and
M.
Nabi-Bidhendi
,
Neural Comput. Appl.
(
2016
).
42.
F.
Sarrazin
,
F.
Pianosi
, and
T.
Wagener
,
Environ. Model. Software
79
,
135
(
2016
).
43.
F.
Campolongo
,
A.
Saltelli
, and
J.
Cariboni
,
Comput. Phys. Commun.
182
,
978
(
2011
).
44.
MathWorks
.
MathWorks
(
The MathWorks, Inc.
,
2015
), p.
118
.
45.
D. L.
King
, “
Photovoltaic module and array performance characterization methods for all system operating conditions
,”
AIP Conf. Proc.
394
,
347
(
1997
).
46.
J. D.
Mondol
,
Y. G.
Yohanis
,
M.
Smyth
, and
B.
Norton
,
Sol. Energy
78
,
163
176
(
2005
).
47.
J. D.
Mondol
,
Y. G.
Yohanis
, and
B.
Norton
, “
The effect of low insolation conditions and inverter oversizing on the long-term performance of a grid-connected photovoltaic system
,”
Prog. Photovoltaics Res. Appl.
15
,
353
(
2007
).
48.
R.
Chenni
,
M.
Makhlouf
,
T.
Kerbache
, and
A.
Bouzid
,
Energy
32
,
1724
(
2007
).
49.
E.
Skoplaki
,
A. G.
Boudouvis
, and
J. A.
Palyvos
,
Sol. Energy Mater. Sol. Cells
92
,
1393
(
2008
).
50.
E.
Skoplaki
and
J. A.
Palyvos
,
Renewable Energy
34
,
23
(
2009
).
51.
S.
Kurtz
,
K.
Whitfield
,
D.
Miller
,
J.
Joyce
,
J.
Wohlgemuth
,
M.
Kempe
,
N.
Dhere
,
N.
Bosco
, and
T.
Zgonena
, in
Conference Record of IEEE Photovoltaic Specialist Conference
(
2009
), pp.
002399
002404
.
52.
E.
Akyuz
,
C.
Coskun
,
Z.
Oktay
, and
I.
Dincer
,
Energy
44
,
1059
(
2012
).
53.
A. M.
Muzathik
,
Int. J. Energy Eng.
4
,
151
(
2014
).
54.
F.
Pianosi
,
K.
Beven
,
J.
Freer
,
J. W.
Hall
,
J.
Rougier
,
D. B.
Stephenson
, and
T.
Wagener
,
Environ. Model. Software
79
,
214
(
2016
).
You do not currently have access to this content.