Solar technology operating at elevated temperature conditions demands accurate knowledge of the optical and thermal properties of the materials involved in the construction and operation of solar collectors, reactors, and energy storages, among many others. Thermal energy storage (TES) devices involve successive melting and crystallization processes, which result in high complexity materials where the morphology, composition, and porosity could be highly non-homogeneous. In these cases, contact techniques for determining the thermal properties are highly susceptible and do not provide reliable measurements. It is under these conditions that non-contact photothermal techniques can provide superior performance, because in this case, the heat inducing source is a laser beam and the detector is usually a photodiode or a thermographic camera which are in non-contact with samples. The materials applied as storage medium in a TES unit can be divided into four groups: metals and alloys, ceramics and glasses, polymers and elastomers, and composites that include natural materials. Soda lime silicate glass recyclable waste is a very promising material for storage medium due to its inexpensive and wide availability. In this paper, we examined soda lime silicate glass-graphite composites for use as storage medium in a TES unit. A simple one-dimensional model for thermal conductivity was developed based on equivalent thermal circuits for series-parallel composite walls, and we found that thermal conductivity values depend on the amount of graphite dispersed into the samples, the porous media, and their structure.

1.
N.
Selvakumar
and
H. C.
Barshilia
, “
Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications
,”
Sol. Energy Mater Sol. Cells
98
,
1
23
(
2012
).
2.
U.
Herrmann
,
B.
Kelly
, and
H.
Price
, “
Two-tank molten salt storage for parabolic trough solar power plants
,”
Energy.
29
(
5–6
),
883
893
(
2004
).
3.
V. V.
Tyagi
and
D.
Buddhi
, “
PCM thermal storage in buildings: A state of art
,”
Renewable Sustainable Energy Rev.
11
(
6
),
1146
1166
(
2007
).
4.
D.
Elliott
,
Renewables: A Review of Sustainable Energy Supply Options
(
IOP Publishing
,
Bristol, UK
,
2013
).
5.
A. M.
Khudhair
and
M. M.
Farid
, “
A review on energy conservation in building applications with thermal storage by latent heat using phase change materials
,”
Energy Convers. Manage.
45
(
2
),
263
275
(
2004
).
6.
A.
Gil
,
M.
Medrano
,
I.
Martorell
 et al, “
State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization
,”
Renewable Sustainable Energy Rev.
14
(
1
),
31
55
(
2010
).
7.
A. I.
Fernandez
,
M.
Martínez
,
M.
Segarra
,
I.
Martorell
, and
L. F.
Cabeza
, “
Selection of materials with potential in sensible thermal energy storage
,”
Sol. Energy Mater. Sol. Cells
94
(
10
),
1723
1729
(
2010
).
8.
A.
Sharma
,
V. V.
Tyagi
,
C. R.
Chen
, and
D.
Buddhi
, “
Review on thermal energy storage with phase change materials and applications
,”
Renewable Sustainable Energy Rev.
13
(
2
),
318
345
(
2009
).
9.
N.
Pfleger
,
T.
Bauer
,
C.
Martin
,
M.
Eck
, and
A.
Wörner
, “
Thermal energy storage - overview and specific insight into nitrate salts for sensible and latent heat storage
,”
Beilstein J. Nanotechnol.
6
(
1
),
1487
1497
(
2015
).
10.
I.
Dincer
, “
On thermal energy storage systems and applications in buildings
,”
Energy Build.
34
(
4
),
377
388
(
2002
).
11.
M. M.
Farid
,
A. M.
Khudhair
,
S. A. K.
Razack
, and
S.
Al-Hallaj
, “
A review on phase change energy storage: Materials and applications
,”
Energy Convers. Manage.
45
(
9–10
),
1597
1615
(
2004
).
12.
A. C. P.
Galvão
,
A. C. M.
Farias
, and
J. U. L.
Mendes
, “
Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation
,”
Cerâmica
61
,
367
373
(
2015
).
13.
V. W. F.
Thoo
,
N.
Zainuddin
,
K. A.
Matori
, and
S. A.
Abdullah
, “
Studies on the potential of waste soda lime silica glass in glass ionomer cement production
,”
Adv. Mater. Sci. Eng.
2013
,
395012
.
14.
O. J.
McGann
and
M. I.
Ojovan
, “
The synthesis of graphite-glass composites intended for the immobilisation of waste irradiated graphite
,”
J. Nucl. Mater.
413
(
1
),
47
52
(
2011
).
15.
B.
Cárdenas
,
N.
León
,
M. H.
Bremer
, and
J.
Pye
, “
Analysis of a silica glass based high temperature thermal energy storage unit for concentrated solar power applications
,” in
Proceedings of the ISES Solar World Congress 2015
(International Solar Energy Society, Freiburg, Germany, 2016), Vol. 2015, pp.
1
12
.
16.
A. S.
Pinheiro
,
Z. M.
Costa
,
M. J. V.
Bell
,
V.
Anjos
,
S. T.
Reis
, and
C. S.
Ray
, “
Thermal characterization of glasses prepared from simulated compositions of lunar soil JSC-1A
,”
J. Non-Cryst. Solids
359
,
56
59
(
2013
).
17.
M. L.
Baesso
,
J.
Shen
, and
R. D.
Snook
, “
Time-resolved thermal lens measurement of thermal diffusivity of soda-lime glass
,”
Chem. Phys. Lett.
197
(
3
),
255
258
(
1992
).
18.
H.
Shibata
,
A.
Suzuki
, and
H.
Ohta
, “
Measurement of thermal transport properties for molten silicate glasses at high temperatures by means of a novel laser flash technique
,”
Mater. Trans.
46
(
8
),
1877
1881
(
2005
).
19.
J.
Ordonez-Miranda
,
R.
Yang
, and
J. J.
Alvarado-Gil
, “
On the thermal conductivity of particulate nanocomposites
,”
Appl. Phys. Lett.
98
(
23
),
233111
(
2011
).
20.
J.
Ordonez-Miranda
and
J. J.
Alvarado-Gil
, “
Effect of the pore shape on the thermal conductivity of porous media
,”
J. Mater. Sci.
47
(
18
),
6733
6740
(
2012
).
21.
T. W.
Clyne
,
I. O.
Golosnoy
,
J. C.
Tan
, and
A. E.
Markaki
, “
Porous materials for thermal management under extreme conditions
,”
Philos. Trans. A: Math. Phys. Eng. Sci.
364
(
1838
),
125
146
(
2006
).
22.
S.
Ackermann
,
J. R.
Scheffe
,
J.
Duss
, and
A.
Steinfeld
, “
Morphological characterization and effective thermal conductivity of dual-scale reticulated porous structures
,”
Materials (Basel)
7
(
11
),
7173
7195
(
2014
).
23.
M. F.
de Magalhães
,
R. A. N.
Ferreira
,
P. A.
Grossi
, and
R. M.
de Andrade
, “
Measurement of thermophysical properties of human dentin: Effect of open porosity
,”
J. Dent.
36
(
8
),
588
594
(
2008
).
24.
F.
Agyenim
,
N.
Hewitt
,
P.
Eames
, and
M.
Smyth
, “
A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
,”
Renewable Sustainable Energy Rev.
14
(
2
),
615
628
(
2010
).
25.
M.
Liu
,
W.
Saman
, and
F.
Bruno
, “
Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems
,”
Renewable Sustainable Energy Rev.
16
(
4
),
2118
2132
(
2012
).
26.
M. M.
Kenisarin
, “
High-temperature phase change materials for thermal energy storage
,”
Renewable Sustainable Energy Rev.
14
(
3
),
955
970
(
2010
).
27.
R.
Gutierrez
,
H.
Garcia
,
B.
Cardenas
, and
N.
Leon
, “
Material selection for latent heat based high temperature solar thermal energy storage
,”
Energy Procedia
74
(
81
),
1525
1532
(
2015
).
28.
B.
Cárdenas
,
N.
León
,
J.
Pye
, and
H. D.
García
, “
Design and modeling of a high temperature solar thermal energy storage unit based on molten soda lime silica glass
,”
Sol. Energy
126
,
32
43
(
2016
).
29.
S. Q. S.
Ahmad
,
R. J.
Hand
, and
C.
Wieckert
, “
Glass melting using concentrated solar thermal energy
,”
Glass Technol.: Eur. J. Glass Sci. Technol., Part A
58
(
2
),
41
48
(
2017
).
30.
M. I.
Ojovan
, “
Viscosity and glass transition in amorphous oxides
,”
Adv. Condens. Matter Phys.
2008
,
1
23
.
31.
A.
Cezairliyan
,
T.
Baba
, and
R. A.
Taylor
, “
High-temperature laser-pulse thermal-diffusivity apparatus
,”
Int. J. Thermophys.
15
(
2
),
317
341
(
1994
).
32.
H.
Ohta
,
G.
Ogura
,
Y.
Waseda
, and
M.
Suzuki
, “
Thermal diffusivity measurements of molten salts using a three-layered cell by the laser flash method
,”
Rev. Sci. Instrum.
61
,
2645
2649
(
1990
).
33.
J.
Blumm
and
J.
Opfermann
, “
Improvement of the mathematical modeling of flash measurements
,”
High Temp. - High Pressures
34
(
5
),
515
521
(
2002
).
34.
W. J.
Parker
,
R. J.
Jenkins
,
C. P.
Butler
, and
G. L.
Abbott
, “
Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity
,”
J. Appl. Phys.
32
(
9
),
1679
1684
(
1961
).
35.
M.
Sheindlin
,
D.
Halton
,
M.
Musella
, and
C.
Ronchi
, “
Advances in the use of laser-flash techniques for thermal diffusivity measurement
,”
Rev. Sci. Instrum.
69
(
3
),
1426
1436
(
1998
).
36.
J. A.
Cape
and
G. W.
Lehman
, “
Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity
,”
J. Appl. Phys.
34
(
7
),
1909
1913
(
1963
).
37.
L. M.
Clark
and
R. E.
Taylor
, “
Radiation loss in the flash method for thermal diffusivity
,”
J. Appl. Phys.
46
,
714
719
(
1975
).
38.
S. M.
Lima
,
J. A.
Sampaio
,
T.
Catunda
,
A. C.
Bento
,
L. C. M.
Miranda
, and
M. L.
Baesso
, “
Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: A review
,”
J. Non-Cryst. Solids
273
,
215
227
(
2000
).
39.
M.
Lazard
,
S.
André
, and
D.
Maillet
, “
Diffusivity measurement of semi-transparent media: Model of the coupled transient heat transfer and experiments on glass, silica glass and zinc selenide
,”
Int. J. Heat Mass Transfer
47
,
477
487
(
2004
).
40.
K.
Shinzato
and
T.
Baba
, “
A laser flash apparatus for thermal diffusivity and specific heat capacity measurements
,”
J. Therm. Anal. Calorim.
64
,
413
422
(
2001
).
41.
J.
Huang
and
P. K.
Gupta
, “
Temperature dependence of the isostructural heat capacity of a soda lime silicate glass
,”
J. Non-Cryst. Solids
139
(
C
),
239
247
(
1992
).
42.
P.
Richet
, “
Heat capacity of silicate glasses
,”
Chem. Geol.
62
(
1–2
),
111
124
(
1987
).
43.
A.
Chopelas
, “
Thermal expansion, heat capacity, and entropy of MgO at mantle pressures
,”
Phys. Chem. Miner.
17
(
2
),
142
148
(
1990
).
44.
E. I.
Andritsos
,
E.
Zarkadoula
,
A. E.
Phillips
 et al, “
The heat capacity of matter beyond the Dulong-Petit value
,”
J. Phys.: Condens. Matter
25
(
23
),
235401
(
2013
).
45.
J.
Januszewski
,
M. I.
Khokhar
, and
A. S.
Mujumdar
, “
Thermal conductivity of some porous metals
,”
Lett. Heat Mass Transfer
4
(
6
),
417
423
(
1977
).
46.
Y.
Feng
,
B.
Yu
,
M.
Zou
, and
D.
Zhang
, “
A generalized model for the effective thermal conductivity of porous media based on self-similarity
,”
J. Phys. D: Appl. Phys.
37
(
21
),
3030
3040
(
2004
).
47.
T.
Gambaryan-Roisman
,
M.
Shapiro
,
E.
Litovsky
, and
A.
Shavit
, “
Influence of gas emission on heat transfer in porous ceramics
,”
Int. J. Heat Mass Transfer
46
(
3
),
385
397
(
2003
).
48.
R.
Baxter
,
R.
Rawlings
,
N.
Iwashita
, and
Y.
Sawada
, “
Effect of chemical vapor infiltration on erosion and thermal properties of porous carbon/carbon composite thermal insulation
,”
Carbon N. Y.
38
(
3
),
441
449
(
2000
).
49.
J.
Michalowski
,
D.
Mikociak
,
K. J.
Konsztowicz
, and
S.
Blazewicz
, “
Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices
,”
J. Nucl. Mater.
393
(
1
),
47
53
(
2009
).
50.
X.
Li
and
W.
Strieder
, “
Emissivity of high-temperature fiber composites
,”
Ind. Eng. Chem. Res.
48
(
4
),
2236
2244
(
2009
).
51.
F. A.
Al-Sulaiman
,
Y. N.
Al-Nassar
, and
E. M. A.
Mokheimer
, “
Numerical prediction of the thermal conductivity of fibers
,”
Heat Mass Transfer
42
(
5
),
449
461
(
2006
).
52.
R.
dos Santos Escarpini Filho
and
S. P. C.
Marques
, “
A model for evaluation of effective thermal conductivity of periodic composites with poorly conducting interfaces
,”
Mater. Res.
17
(
5
),
1344
1355
(
2014
).
53.
F. A.
Al-Sulaiman
,
E. M. A.
Mokheimer
, and
Y. N.
Al-Nassar
, “
Prediction of the thermal conductivity of the constituents of fiber reinforced composite laminates
,”
Heat Mass Transfer
42
(
5
),
370
377
(
2006
).
54.
J.
Lienhard
 IV
and
V. J.
Lienhard
,
A Heat Transfer Textbook
, 3rd ed. (
Phlogiston Press
,
Cambridge, Massachusetts
, 2008).
55.
Y. S.
Touloukian
,
Thermal Conductivity, Nonmetallic Liquids and Gases
(
Plenum Publishing Corporation
,
1970
).
56.
W.
Ehlers
and
K.
Häberle
, “
Interfacial mass transfer during gas–liquid phase change in deformable porous media with heat transfer
,”
Transp. Porous Media
114
,
1
32
(
2016
).
57.
A. C.
Ferrari
, “
Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects
,”
Solid State Commun.
143
(
1–2
),
47
57
(
2007
).
58.
O.
Fesenko
,
G.
Dovbeshko
,
A.
Dementjev
,
R.
Karpicz
,
T.
Kaplas
, and
Y.
Svirko
, “
Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer graphene
,”
Nanoscale Res. Lett.
10
(
1
),
163
(
2015
).
59.
D. R.
Cooper
,
B.
D'Anjou
,
N.
Ghattamaneni
 et al, “
Experimental review of graphene
,”
ISRN Condens. Matter Phys.
2012
,
1
56
.
60.
R.
Zhang
,
K.-C.
Chang
,
T.-C.
Chang
 et al, “
High performance of graphene oxide-doped silicon oxide-based resistance random access memory
,”
Nanoscale Res. Lett.
8
(
1
),
497
(
2013
).
61.
A. K.
Yadav
and
P.
Singh
, “
A review of the structures of oxide glasses by Raman spectroscopy
,”
RSC Adv.
5
(
83
),
67583
67609
(
2015
).
62.
M.
Wang
,
J.
Cheng
,
M.
Li
, and
F.
He
, “
Raman spectra of soda-lime-silicate glass doped with rare earth
,”
Phys. B: Condens. Matter
406
(
20
),
3865
3869
(
2011
).
63.
American Society for Testing and Materials
, Standard Tables for Reference Solar Spectral Irradiances : Direct Normal and Hemispherical on 37 Tilted Surface, West Conshohocken, PA, USA,
2013
.
64.
K. T.
Roro
,
N.
Tile
,
B.
Yalisi
 et al, “
Selective solar absorber coating research at the CSIR (South Africa)
,” in
World Renewable Energy Congress
(
2011
), pp.
4006
4013
.
65.
Z.
Chen
,
T.
Boström
, and
Q.
Nguyen
, “
Carbon nanotube spectrally selective solar absorbers
,” in
Proceedings of the EuroSun 2014 Conference, September 2014
, pp.
1
7
.
66.
J. A.
Duffie
and
W. A.
Beckman
,
Solar Engineering of Thermal Processes
, 3rd ed. (
John Wiley & Sons
,
New Jersey
,
2006
).
You do not currently have access to this content.