Decentralizedenergy planning (DEP) is in the interest of efficient utilization of resources. DEP is one of the options to meet the rural and small scale energy needs in a reliable, affordable, and environmentally sustainable way. The main aspect of the energy planning at the decentralized level would be to prepare an area-based DEP to meet energy needs and development of alternate energy sources at least cost to the economy and environment. The geographical coverage and scale reflect the level at which the analysis takes place, which is an important factor in determining the structure of models. DEP planning involves multiple objectives and different kinds of constraints. The present work presents the methodology for the DEP. The kinds of objective functions and constraints which have to be included in the DEP have been presented in the present work. Decentralized planning involves scaling down energy planning to subnational or regional scales. Energy planning at the village level is the lowest level of the application of decentralized planning principle and district is the uppermost level. The present work for the analysis of DEP at the village level has considered different scenarios. Conflicting objectives are considered in the implementation of DEP at the village level. This implementation has been shown through a case study done in a village named Ungra in the Tumkur district from the Karnataka state in India. DEP is assessed with the help of field studies, available data, and decentralized energy modeling. Through DEP energy demand at 2020 has been presented for the Ungra village.

1.
A. K. N.
Reddy
,
Econ. Polit. Weekly
34
,
3455
(
1999
).
2.
A. K. N.
Reddy
and
D. K.
Subramanian
,
The Design of Rural Energy Centers
(
Indian Academy of Sciences
,
Bangalore
,
1980
), pp.
109
130
.
3.
N. H.
Ravindranath
and
D. O.
Hall
,
Biomass, Energy, and Environment: A Developing Country Perspective From India
(
Oxford University Press
,
Oxford, UK
,
1995
).
4.
R. B.
Hiremath
,
Renewable Sustainable Energy Rev.
11
,
729
(
2007
).
5.
R.
Ramakumar
,
P. S.
Shetty
, and
K.
Ashenayi
,
IEEE Trans. Energy Convers.
EC-1
,
18
(
1986
).
6.
B.
Joshi
,
T. S.
Bhatti
, and
N. K.
Bansal
,
Energy
17
,
869
(
1992
).
7.
C. S.
Sinha
and
T. C.
Kandpal
,
Energy Policy
19
,
441
(
1991
).
8.
R.
Srinivasan
and
P.
Balachandra
,
Int. J. Energy Res.
17
,
621
(
1993
).
9.
N.
Bryson
and
A.
Joseph
,
Comput. Oper. Res.
26
,
637
(
1999
).
10.
R.
Ramanathan
and
L. S.
Ganesh
,
Energy
20
,
63
(
1995
).
11.
S.
Ahmed
and
A. A.
Husseiny
,
Energy
3
,
669
(
1978
).
12.
H. G.
Nezhad
,
Strategic Plan. Energy Environ.
1990
,
2648
.
13.
T. L.
Saaty
and
R. S.
Mariano
,
Energy Syst. Policy
3
,
85
(
1979
).
14.
R.
Ramanathan
and
L. S.
Ganesh
,
Eur. J. Oper. Res.
80
,
410
(
1995
).
15.
D.
Hoog
and
B.
Hobbs
,
Energy
18
,
1153
(
1993
).
16.
M.
Hussein
and
M.
Abo-Sinna
,
Fuzzy Sets Syst.
69
,
115
(
1995
).
17.
R.
Ramanathan
and
L. S.
Ganesh
,
Int. J. Energy Res.
17
,
105
(
1993
).
18.
D.
Ghosh
,
B. J.
Pal
, and
M.
Basu
,
Int. J. Manage. Syst.
11
,
267
(
1995
).
19.
J.
Parikh
,
Energy Models for 2000 and Beyond
(
McGraw-Hill
,
New Delhi
,
1997
).
20.
P.
Deo
,
S.
Modak
, and
P. R.
Shulka
,
Decentralized Energy Planning
(
Oxford & IBH Publishing Co. Pvt. Ltd
,
New Delhi
,
1991
).
21.
P.
Kanniappan
and
T.
Ramachandran
,
Int. J. Energy Res.
24
,
1
(
2000
).
22.
J.
Goldemberg
,
J.
Johansson
,
T. B.
Ready
, and
A. K. N.
Williams
,
Energy for a Sustainable World
(
Wiley Eastern
,
New Delhi
,
1988
).
23.
N. H.
Ravindranath
,
Biomass Bioenergy
29
,
178
(
2005
).
24.
N. H.
Ravindranath
and
H. N.
Chanakya
,
Biomass
9
,
215
(
1986
).
25.
J.
Christopher
and
B.
John
, “
An economic evaluation of small-scale distributed electricity generation technologies
,” Oxford Institute for Energy Studies Technical Report,
2003
.
You do not currently have access to this content.