A detailed understanding of the complex rotation–vibration spectrum of the water molecule is vital for many areas of scientific and human activity, and thus, it is well studied in a number of spectral regions. To enhance our perception of the spectrum of the parent water isotopologue, H216O, a dataset of 270 745 non-redundant measured transitions is assembled, analyzed, and validated, yielding 19 204 rovibrational energy levels with statistically reliable uncertainties. The present study extends considerably an analysis of the rovibrational spectrum of H216O, published in 2013, by employing an improved methodology, considering about one-third more new observations (often with greatly decreased uncertainties), and using a highly accurate first-principles energy list for validation purposes. The database of experimental rovibrational transitions and empirical energy levels of H216O created during this study is called W2020. Some of the new transitions in W2020 allow the improved treatment of many parts of the dataset, especially considering the uncertainties of the experimental line positions and the empirical energy values. The W2020 dataset is examined to assess where measurements are still lacking even for this most thoroughly studied isotopologue of water, and to provide definitive energies for the lower and upper states of many yet-to-be-measured transitions. The W2020 dataset allows the evaluation of several previous compilations of spectroscopic data of water and the accuracy of previous effective Hamiltonian fits.

Several hundred papers exist, spanning almost 100 years of studies, which report laboratory measurements of gas-phase rovibrational transitions within the ground electronic state of water isotopologues. Many of the relevant data have been cited and evaluated in Refs. 1–5, detailing the work of an International Union of Pure and Applied Chemistry (IUPAC) Task Group (TG) on “A Database of Water Transitions from Experiment and Theory” (Project No. 2004-035-1-100). This TG carefully analyzed all the measured and assigned transitions available to them and recommended a large number of validated experimental transitions and the corresponding empirical energy levels for nine major isotopologues of water.5 The study on the main water isotopologue, H216O,3 was published in 2013. Since then, a lot of new developments have been made concerning water spectroscopy,6–44 which impelled us to revisit the task of validating and analyzing an enlarged set of experimental transitions and empirical energy levels of H216O. Furthermore, despite the extensive list of sources considered in Ref. 3, hereafter called Part III (of the IUPAC TG’s efforts), a number of spectroscopic studies prior to 2013 have come to our attention, which were not dealt with explicitly during the Part III study.45–83 Note that the TG’s work was built on a previous comprehensive compilation of empirical energy levels of H216O.84 

Empirical rovibrational energy values of water isotopologues, which can be obtained from the experimental line positions, for example, via the MARVEL (Measured Active Rotational–Vibrational Energy Levels) methodology,85–87 employed, in fact, during this study, have a number of important applications. The energy levels have been used to supplement, and often replace, the observed transition wavenumbers in spectroscopic databases designed for applications to room-temperature88–91 and hot31,92 planetary atmospheres. The availability of accurate energies allows the computation of highly accurate ideal-gas partition functions and related thermodynamic quantities,93–95 provide input for spectral assignments,27,32,44 facilitate the testing and construction of revised potential energy surfaces (PESs),96–99 and expedite the validation of theoretical models, in general.100 There are also more specific applications, such as the search for orthopara transitions for the H216O molecule101 and a reliable prediction for transition frequencies of various water isotopologues.92 Finally, we mention that limited updates to the Part III data were published as part of our ongoing attempts to improve certain aspects of the MARVEL algorithm.86,87,102

This study, dedicated to the high-resolution spectroscopy of the parent water isotopologue, H216O, provides the first major extension of the Part III3 results. Based on the list of experimental H216O lines available from the literature, here we present new recommendations for old energy levels, as well as a number of new rovibrational states, by assembling a significantly updated line-by-line spectroscopic database for H216O. Due to the large number of technical developments during the MARVEL analysis and the much enlarged experimental dataset employed, it is suggested that the database collated during this study, called W2020, should replace the list reported earlier by the IUPAC TG (Part III) and should be used exclusively by practitioners of water spectroscopy and those who need rovibrational transitions and energy levels of H216O. In particular, it is expected that the new and improved data of this study will enter the next edition of the canonical spectroscopic database, HITRAN.88 

To obtain the best possible estimates for the rovibrational energy values of H216O, all of the observed high-resolution rovibrational lines taken from the literature were processed simultaneously, yielding a spectroscopic network (SN).85,103,104 SNs consist of nodes (energy levels) linked by edges (measured or computed transitions), which are oriented from their lower energy levels to their upper ones (independently of whether they were recorded by absorption, emission, or action spectroscopy). Since often there are repeated observations for the same transition, these multiple measurements are represented with multiple edges in the SN. The lines sharing the same upper and lower states form coincidence classes.

The energy levels of SNs often form distinct components, that is, sets not connected by spectral lines. If a component of the SN contains the lowest-energy state of a nuclear-spin isomer of the molecule examined, this component is called a principal component (PC); otherwise, it is a floating component (FC). Excluded energy levels,87 forming isolated nodes (whose transitions have all been deleted), are all special FCs of the SN. For H216O, no transitions linking energy levels of its two (ortho and para) nuclear-spin isomers have been observed;101 thus, the energy separation of the ortho and para PCs is not known experimentally, though it can be estimated with considerable accuracy.44 

As dictated by their edge distributions,104,105 experimental SNs are characterized by a small number of hubs, energy levels incident to a large number of transitions. These hubs are the lower states of a huge number of spectral lines. For further details about the important network-theoretical notions mentioned, see Ref. 104 and Sec. 2.1 of Ref. 87.

During the present study, the extended MARVEL85–87 scheme (extMARVEL)87 and the implementation of its automated part (intMARVEL) were utilized to determine accurate empirical energy values for H216O with well-defined uncertainties from the collated set of observed and assigned rovibrational transitions with specified uncertainties. As shown in Ref. 87, the use of the intMARVEL code helps to retain the high accuracy of the best measurements for the derived energy levels. Since this feature was not available during the Part III compilation and analysis,3 the W2020 dataset constructed with the extMARVEL protocol exhibits much improved energy values (with more dependable uncertainties), especially for the low-lying rovibrational states of H216O. In the interest of space, only the four most relevant characteristics of the extMARVEL procedure are outlined here; for all the other terms and technical aspects, the reader is referred to Ref. 87.

First, in contrast to the standard MARVEL algorithm, the extMARVEL protocol is based on the use of segments (sets of transitions coming from the same data source with approximately the same experimental uncertainties). For each segment, an estimated segment uncertainty (ESU) is given; its refined value, provided by an analysis of the cycles106 in the SN, serves as an initial uncertainty value for the lines of this segment. Although line-by-line input uncertainties are not required, originally published uncertainties, if accessible, are still utilized by the intMARVEL code. Second, inversion and the weighted least-squares refinement of the line uncertainties are built upon consecutive addition of transition blocks of decreasing accuracy, leading to highly accurate empirical energy values. The extMARVEL-predicted wavenumbers determined in a particular block are not permitted to be changed by the inclusion of less accurate observations. Third, automatic recalibration of the ill-calibrated segments is performed. As demonstrated earlier,3 MARVEL is well suited to complete this important task. Fourth, synchronization87 of the combination difference relations is executed to reduce the uncertainties of the empirical energies.

In Ref. 107, the original six-grade classification scheme87 of the extMARVEL approach was simplified. Here, we make again a slight change to MARVEL’s classification scheme: energy levels are now associated with four so-called resistance labels—R+, strongly resistant; R−, weakly resistant; S, semi-resistant; and U, unresistant. Resistance labels reflect the empirical energy level’s reliability, which is an extra, qualitative information beyond that offered by uncertainties, and their resistance toward changes forced upon them by some (at present, less precise) spectral lines. Energy values with the resistance label R+ are deemed to be fully reliable, and the availability of new transitions is not expected to influence them outside of their present uncertainty limits. The other transitions may vary when further, even more accurate transitions will be added to the transition database. Although it is likely that even the non-R+ rovibrational states (particularly those with R− classification) have reliable energy values, they are not fully certified by the extMARVEL analysis. We emphasize again that the uncertainties of the extMARVEL empirical rovibrational energy levels and their resistance labels provide complementary information about the reliability of the levels.

For the traditional MARVEL code,85,86 the input transitions have to be provided in the form of a plain text file. If each column of the text file consists of the same type of data, this input representation is a reasonable choice for storing the spectral lines processed by MARVEL. However, when different kinds of information (e.g., measured line positions with various units, comments on the transition entries, or some characteristics of the data sources and their segments87 having approximately the same experimental accuracy) are collected in the same column, a simple text file becomes unsuitable for handling the complex data structure. To support the annotation and the transparent administration of the collated MARVEL transitions, we decided to replace the original input format with a file structure following the rules of the eXtensible Markup Language (XML). An XML-based input helps to (a) maintain provenance of the data; (b) have a timestamp on the individual transitions, reflecting their occasional relabeling; and (c) give a description of the “original” literature information. The XML-based extMARVEL protocol is called xMARVEL. This novel feature of the present study is reflected in the related entries of the supplementary material.

The general structure of MARVEL XML is defined in Fig. 1. Briefly, the root element of MARVEL XML is named MARVEL, which contains the source elements. A source element comprises information about a particular data source [tag name and reference—the latter corresponds to the digital object identifier (DOI) for journal articles]. Each source element must include at least one segment element, storing data of the related data-source segment. The children of the segment element are the input transitions collected in the line elements. A line element should consist of the following entries: line position (in element pos) and its uncertainty (in element unc), labels of the upper and lower states (in element us and ls, respectively), and a unique tag for the identification of the underlying transition entry. A much more detailed discussion of the MARVEL XML format will be given in an upcoming paper.108 

FIG. 1.

Definition of MARVEL XML.

FIG. 1.

Definition of MARVEL XML.

Close modal

As mentioned in the Introduction, the Part III database3 of transitions and energy levels served as the starting point of the present xMARVEL study of the rovibrational spectrum of H216O. Extension and improvement of the Part III dataset includes five major, to some extent interrelated, tasks: (a) based on a careful search of the literature, construct the most complete catalog of published experimental lines; (b) set the best possible (often unreported) initial uncertainties for the observed line positions and segment87 the data sources appropriately to help the uncertainty refinement process; (c) certify the existence of the empirical energy levels by a comparison with their first-principles counterparts (most important here is the PoKaZaTeL31 list); (d) relying on the xMARVEL energy values, the related assignments, and reliable first-principles results,31,109 expand the transition database with certain unmeasured, unreported, or even artificial transitions, inspired by well-founded spectroscopic information, and derive further energy levels; and (e) create the best possible, self-consistent labels for the rovibrational states.

As to task (a), the initial, Part III-based dataset was (i) reduced since two of the 98 sources were removed (81Kyro110 contains only redundant lines, while the transitions of 05ZoShPoTe111 proved to be not accurate enough to combine them with high-resolution data of other sources), (ii) extended with data sources published after the Part III article, and (iii) enlarged with earlier sources not treated explicitly in Part III. It should also be noted that sources where some lost transitions or lines of unidentified origin were recognized were re-entered afresh into the W2020 database. As a result, 78 new data sources were included in the W2020 database, leading to 174 experimental sources in total.

Concerning task (b), the initial line uncertainties, indispensable for the successful execution of the xMARVEL method, were selected with great care. This is an especially important step as these values determine in which transition block the individual lines should be refined. Thus, all the data sources were divided into segments, and these segments were supplied with estimated segment uncertainties. The ESU values serve as educated guesses for the initial uncertainties of the line positions, except for those transitions, mainly microwave and terahertz, characterized by originally reported individual uncertainties. For the accuracy of particular segments, we tried to adopt the smallest reasonable ESU values to facilitate the generation of correct uncertainty estimates for the derived empirical energies. Accordingly, some segments ended up with higher accuracy than those given in Part III. For example, the expected uncertainties of the segments 06MaToNaMo,112 85BrTo,113 05Toth,114 and 99Toth115 were modified as follows: 3 × 10−4 → 3 × 10−6, 1 × 10−3 → 1 × 10−4, 1 × 10−3 → 2 × 10−4, and 1 × 10−3 → 3 × 10−4 (all values in cm−1), respectively. In other cases, slightly larger uncertainties had to be assigned to certain segments for which a systematic increase occurred in the unsigned least-squares residuals (differences between the observed and calculated wavenumbers). An example is 08ZoShOvPo,116 for which a change (in cm−1) of 5 × 10−3 → 2 × 10−2 was made to improve the overall consistency of the transition database. Clearly, many of the ESU values are optimized for the W2020 dataset; thus, some of them might need to be modified when future measurements become available.

After the generation of the rovibrational empirical energies, an automated check [task (c)] was performed to certify that they have unique counterparts in the PoKaZaTeL list (based just on J and parity information; see Table 1 of Ref. 3), within a tolerance of 10−4 × E, where E is the energy of the xMARVEL energy level examined and J is the rotational quantum number. For E ≤ 30 000 cm−1, those empirical rovibrational states that could not be matched within this tolerance were excluded from the database, together with the corresponding transitions. Due to these exclusions and some missing links, 148 energy levels became part of FCs. Above 30 000 cm−1, all the energy levels were left intact because, in this region, the PoKaZaTeL PES needs further refinement to ensure that it can be properly utilized for this validation task.

During the execution of task (d), several explicitly unmeasured (and unmeasurable) transitions were placed into the W2020 database. First, the disconnected ortho and para states were linked with a forbidden line, (0 0 0)10,1 ← (0 0 0)00,0, for which an extremely accurate, empirical wavenumber value,44 23.794 361 22(25) cm−1, was adopted. The rovibrational lines of H216O are designated hereafter using the standard normal-mode–rigid-rotor notation (v1v2v3)JKa,Kc(v1v2v3)JKaKc, where ′ and ″ refer to the upper and lower state of the given transition, respectively, while the (v1v2v3)JKa,Kc descriptors represent a rovibrational state. Here, v1, v2, and v3 are standard117 vibrational quantum numbers for the symmetric stretch, bend, and asymmetric stretch modes of H216O, respectively, while JKa,Kc are rigid-rotor asymmetric-top quantum numbers.118 Second, nearby ortho and para states were searched for the construction of additional lines, in order to maximize the number of empirically known energy levels. These so-called virtual transitions, collected in source “20virt,” were obtained from the PoKaZaTeL energy list, together with their wavenumbers. Third, similar to Part III, close-lying orthopara transition doublets were also utilized. If the PoKaZaTeL energy-level set revealed that the (so-called) complementary (usually para) transition (separated by not more than 5 × 10−3 cm−1 based on first-principles information) is not reported in the data source of an experimental (mainly ortho) line with a σ wavenumber, then this complementary transition was added to the source “20compl” with the same σ wavenumber.

After the derivation of reliable empirical energy values, conflicts arising from the use of different labeling schemes were resolved, and a self-consistent set of normal-mode and rigid-rotor quantum numbers was provided for the energy levels [task (e)]. Note that in the local-mode notation, the standard normal-mode v1, v2, and v3 vibrational quantum numbers are replaced by (nm)±v2, where n and m are the number of quanta of OH stretch, while v2 retains its meaning. The ± sign also serves as a symmetry label, and it is usual not to indicate + for the n = m cases. For sources 08GrMaZoSh119 and 09GrBoRiMa,120 where the vibrational states were originally represented with local-mode quantum numbers, one-to-one conversion (see Table I.1 of Ref. 121) to normal-mode notation was applied. In the case of 09GrBoRiMa, where the v2 values are missing for some of the transitions, v2 = 0 was assumed.122 

Unfortunately, there are no theoretical techniques that can yield unambiguous labels for high-lying vibrational bands (say, above 11 000 cm−1, the barrier to linearity of water123–125). What makes the situation even more complicated is that it is not unusual that the same authors change their labeling scheme between consecutive publications. For example, the rovibrational state at 10 492.2 cm−1 was labeled as (1 2 0)148,7 in 11MiKaWaCa,76 while in 17MoMiKaBe,25 this designation was changed to (2 0 0)148,7. In the end, we decided to accept, whenever possible, the rovibrational labels of the latest source, hoping that in this way we can minimize labeling conflicts with future measurements. As an additional check, the empirical energies were plotted as an approximately quadratic function of Ka [at fixed v1, v2, v3, J, and (1)v3+Ka+Kc], and these quadratic trends were slightly smoothed, where feasible, by relabeling some rough outlier states. Note that the original labels are included in the MARVEL XML file of the supplementary material. Finally, we have to point out that there are states where we know that the label attached is incorrect, but we were unable to come up with a feasible label. For example, for the states (3 1 0)118,4 and (3 0 1)118,3, part of the lines 18TaMiWaLi.900 and 18TaMiWaLi.901,36 which can be well matched with the PoKaZaTeL data by J and parity, we could not determine the correct labels. While noting the problem in the XML file, we decided not to exclude these “existing” levels from the W2020 dataset.

Table 1 provides a summary of all the data-source segments used during this work, along with some relevant statistical parameters [ESU values, median segment uncertainties (MSUs), and largest segment uncertainties (LSUs)].87 This table updates Table 2 of Part III3 for all the common entries. The data sources applied are partitioned into 200 segments, of which 7 had to be recalibrated (see column 7 of Table 1). For all the segments, the ESUs and MSUs are very similar, implying that the initial uncertainties did not change considerably during the xMARVEL refinement. The final transition database includes 270 745 non-redundant lines from 289 070 experimentally assigned transitions among which 267 289 could be validated during this study.

TABLE 1.

Data source segments of the W2020 dataset and some of their characteristicsa

Segment tagRangeA/N/VESUMSULSURecalib. Factor
69Kukolich126  0.741 68–0.741 68 1/1/1 1.67 × 10−9 1.67 × 10−9 1.67 × 10−9  
09CaPuHaGa127  10.715–20.704 7/7/7 1.67 × 10−8 1.67 × 10−8 2.67 × 10−8  
71Huiszoon128  6.114 6–6.114 6 1/1/1 5.00 × 10−8 1.10 × 10−7 1.10 × 10−7  
95MaKr56  18.577–18.577 1/1/1 6.67 × 10−8 9.69 × 10−8 9.69 × 10−8  
20ToFuSiCs44  7 012.7–7 350.0 156/156/156 1.10 × 10−7 1.10 × 10−7 3.34 × 10−7  
20ToFuSiCs_S244  23.794–23.794 1/1/1 2.50 × 10−7 2.50 × 10−7 2.50 × 10−7  
06GoMaGuKn129  6.114 6–18.577 12/12/12 1.33 × 10−7 1.33 × 10−7 1.64 × 10−6  
05Golubiat65  6.114 6–6.114 6 1/1/1 1.67 × 10−7 4.56 × 10−7 4.56 × 10−7  
07KoTrGoPa130  10.715–12.682 3/3/3 1.67 × 10−7 4.62 × 10−7 1.57 × 10−6  
13TrKoViPa131  12.682–16.294 7/7/6 3.17 × 10−7 4.81 × 10−7 5.87 × 10−7  
18KaStCaDa29  7 164.9–7 185.6 8/8/8 4.00 × 10−7 4.00 × 10−7 4.00 × 10−7  
11Koshelev72  25.085–25.085 1/1/1 4.67 × 10−7 4.67 × 10−7 4.67 × 10−7  
89BaGoKhHa132  6.114 6–6.114 6 1/1/1 5.00 × 10−7 5.00 × 10−7 5.00 × 10−7  
18ChHuTaSu26  12 622–12 665 6/6/6 8.00 × 10−7 8.00 × 10−7 2.00 × 10−6  
71StBe133  0.741 68–6.114 6 3/3/3 1.00 × 10−6 2.30 × 10−6 8.29 × 10−6  
73BlBrEdKn134  357.52–357.52 1/1/1 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6  
83HeMeLu135  13.013–32.954 7/7/7 1.00 × 10−6 1.07 × 10−6 9.61 × 10−6  
83MeLuHe136  16.797–32.954 5/5/5 1.00 × 10−6 1.00 × 10−6 4.94 × 10−6  
80Kuze137  0.400 57–4.002 6 5/5/5 1.33 × 10−6 3.34 × 10−6 8.20 × 10−6  
48GoWeHiSt138  0.741 69–0.741 69 1/1/1 1.67 × 10−6 5.14 × 10−6 5.14 × 10−6  
98ChPaEv139  88.650–88.650 1/1/1 1.67 × 10−6 2.46 × 10−6 2.46 × 10−6  
87BaAlAlPo140  14.199–19.077 6/6/6 1.70 × 10−6 1.70 × 10−6 1.70 × 10−6  
91AmSc141  8.253 7–11.835 5/5/5 2.00 × 10−6 2.00 × 10−6 2.00 × 10−6  
97NaLoInNo142  118.32–119.07 5/5/5 2.03 × 10−6 2.03 × 10−6 4.33 × 10−6  
95MaOdIwTs143  18.577–162.44 139/139/138 2.50 × 10−6 2.50 × 10−6 2.15 × 10−5  
12YuPeDrMa144  9.795 6–90.767 221/217/217 2.50 × 10−6 2.67 × 10−6 6.99 × 10−5  
12YuPeDrMa_S2144  51.326–694.49 4 288/4 276/4 264 2.00 × 10−3 3.76 × 10−4 3.33 × 10−2  
09CaPuBuTa145  36.604–53.444 9/9/9 3.00 × 10−6 3.00 × 10−6 4.86 × 10−6  
06MaToNaMo112  28.685–165.31 104/104/104 3.14 × 10−6 4.32 × 10−6 2.44 × 10−5  
83BuFeKaPo146  16.797–21.545 5/5/5 3.34 × 10−6 3.34 × 10−6 6.67 × 10−6  
13YuPeDr10  17.690–67.209 182/182/182 3.34 × 10−6 3.34 × 10−6 3.34 × 10−5  
91PeAnHeLu147  4.657 0–19.804 30/30/30 3.40 × 10−6 3.40 × 10−6 2.17 × 10−5  
72LuHeCoGo148  6.114 6–25.085 14/14/14 5.00 × 10−6 5.00 × 10−6 5.00 × 10−6  
95Pearson149  4.330 0–17.220 9/9/9 5.00 × 10−6 5.00 × 10−6 1.37 × 10−5  
11DrYuPeGu70  82.862–90.843 26/26/25 5.00 × 10−6 6.67 × 10−6 1.62 × 10−5  
00ChPePiMa150  28.054–52.511 17/17/17 8.00 × 10−6 8.00 × 10−6 1.89 × 10−5  
79HeJoMc151  0.072 049–0.072 049 1/1/1 1.00 × 10−5 1.00 × 10−5 1.00 × 10−5  
79HeJoMc_S2151  1 660.5–1 677.2 2/2/2 1.00 × 10−3 7.74 × 10−4 7.77 × 10−4  
20virt 0.000 000–0.000 010 924/924/924 1.00 × 10−5 1.00 × 10−5 1.00 × 10−5  
20virt_S2 0.000 010–0.000 100 353/353/353 1.00 × 10−4 1.00 × 10−4 1.00 × 10−4  
20virt_S3 0.000 100–0.000 999 530/530/530 1.00 × 10−3 1.00 × 10−3 1.49 × 10−3  
20virt_S4 0.001 004–0.009 997 709/709/709 1.00 × 10−2 1.00 × 10−2 1.80 × 10−2  
19VaTrDoKa42  6 071.4–6 079.9 21/20/19 1.50 × 10−5 2.00 × 10−5 7.30 × 10−4  
51Jen152  0.741 69–0.741 69 1/1/1 2.00 × 10−5 2.00 × 10−5 2.00 × 10−5  
72FlCaVa153  0.741 68–25.085 7/7/7 2.00 × 10−5 1.00 × 10−5 2.74 × 10−5  
06JoPaZeCo154  1 485.1–1 486.2 2/1/1 2.00 × 10−5 1.00 × 10−4 1.00 × 10−4  
13LuLiWaLi8  12 573–12 752 73/73/73 2.00 × 10−5 2.20 × 10−5 5.24 × 10−4  
05HoAnAlPi155  212.56–594.95 165/165/163 3.00 × 10−5 1.62 × 10−5 7.58 × 10−4  
87BeKoPoTr156  7.761 6–19.850 5/5/5 3.34 × 10−5 3.34 × 10−5 4.63 × 10−5  
70StSt49  18.577–18.577 1/1/1 3.40 × 10−5 6.26 × 10−6 6.26 × 10−6  
96Belov157  28.054–30.792 5/5/5 3.40 × 10−5 9.80 × 10−6 1.59 × 10−5  
54KiGo158  6.114 6–6.114 6 1/1/1 5.00 × 10−5 4.04 × 10−5 4.04 × 10−5  
83Guelachv159  1 066.2–2 296.7 1 179/1 178/1 162 5.00 × 10−5 2.11 × 10−4 4.86 × 10−3 0.999 999 843 29 
96BrMa160  5 206.3–5 396.5 28/28/28 5.00 × 10−5 6.05 × 10−5 2.50 × 10−4  
18DeGaViRe28  3 645.3–3 976.6 315/315/314 5.00 × 10−5 1.00 × 10−4 3.24 × 10−3  
91Toth161  1 072.6–2 265.3 739/739/738 6.00 × 10−5 1.06 × 10−4 4.84 × 10−3  
91Toth_S2161  1 06 6.2–2 582.6 235/235/235 2.00 × 10−4 2.34 × 10−4 3.80 × 10−3  
91Toth_S3161  1 229.4–2 458.2 38/38/38 2.00 × 10−3 1.01 × 10−3 2.87 × 10−2  
97MiTyKeWi162  2 507.2–4 402.8 940/932/925 6.00 × 10−5 3.51 × 10−4 5.75 × 10−3  
95PaHo163  177.86–519.59 246/246/245 7.00 × 10−5 8.31 × 10−5 1.94 × 10−3  
93Toth164  1 316.1–4 260.4 582/582/582 8.00 × 10−5 9.00 × 10−5 1.26 × 10−3  
93Toth_S2164  1 30 4.3–4 252.2 273/273/273 5.00 × 10−4 2.31 × 10−4 9.40 × 10−3  
93Toth_S3164  1 381.6–4 006.5 27/27/27 5.00 × 10−3 1.26 × 10−3 4.49 × 10−3  
93Toth_S4164  4 077.7–4 106.9 2/2/2 2.00 × 10−2 1.00 × 10−2 1.00 × 10−2  
93Tothb165  1 881.1–4 306.7 1 064/1 064/1 064 8.00 × 10−5 9.65 × 10−5 1.48 × 10−3  
93Tothb_S2165  1 820.8–4 506.2 1 070/1 070/1 070 2.00 × 10−4 2.08 × 10−4 1.06 × 10−2  
93Tothb_S3165  1 898.6–4 458.8 151/151/151 2.00 × 10−3 1.27 × 10−3 3.81 × 10−2  
93Tothb_S4165  3 529.7–4 468.7 5/5/5 2.00 × 10−2 1.00 × 10−2 1.00 × 10−2  
70EvWeMaEl48  127.48–357.52 2/2/2 1.00 × 10−4 1.22 × 10−4 1.43 × 10−4  
82KaJoHo166  501.57–713.79 70/70/67 1.00 × 10−4 1.47 × 10−4 4.70 × 10−3  
85BrTo113  1 323.3–1 992.7 71/71/71 1.00 × 10−4 5.09 × 10−5 1.73 × 10−3 0.999 999 936 34 
94Tothb167  5 754.1–7 671.7 972/971/970 1.00 × 10−4 1.16 × 10−4 6.30 × 10−3  
94Tothb_S2167  5 750.9–7 919.9 2 045/2 043/2 034 3.00 × 10−4 2.55 × 10−4 2.00 × 10−2  
94Tothb_S3167  5 773.0–7 971.9 522/521/521 3.00 × 10−3 1.00 × 10−3 1.50 × 10−2  
03ZoVa63  610.17–4 044.9 889/763/762 1.00 × 10−4 1.54 × 10−4 5.84 × 10−3  
05PtSmSh66  5 042.7–5 58 5.3 407/407/407 1.00 × 10−4 2.93 × 10−5 9.42 × 10−4  
15SiHo20  7 71 4.8–7 919.9 71/71/71 1.00 × 10−4 1.13 × 10−4 1.77 × 10−3  
18MiMoKaKa168  6 667.6–7 449.2 3 550/3 508/3 505 1.00 × 10−4 2.43 × 10−4 9.82 × 10−3  
18ScCiYaGi33  6 804.4–7 170.3 572/572/563 1.00 × 10−4 1.69 × 10−4 4.97 × 10−3  
85Johns169  18.578–349.76 258/258/258 2.00 × 10−4 8.60 × 10−5 4.36 × 10−3  
86GuRa170  5 103.3–5 547.1 234/234/234 2.00 × 10−4 1.29 × 10−4 1.96 × 10−2 0.999 999 933 57 
94Toth171  11 734–12 638 44/44/44 2.00 × 10−4 9.28 × 10−4 2.09 × 10−3  
94Toth_S2171  11 611–12 737 480/480/478 3.00 × 10−4 7.65 × 10−4 1.94 × 10−2  
94Toth_S3171  11 638–12 752 250/250/249 3.00 × 10−3 1.35 × 10−3 3.33 × 10−2  
94Toth_S4171  11 880–11 934 3/3/3 3.00 × 10−2 1.00 × 10−2 1.00 × 10−2  
05Toth114  2 926.5–7 641.9 1 818/1 817/1 817 2.00 × 10−4 1.00 × 10−4 6.80 × 10−3  
08MiAlMeKl172  1 901.2–6 598.3 3 769/3 514/3 514 2.00 × 10−4 4.86 × 10−4 7.82 × 10−3  
15HuChTaWa173  11 906–12 562 38/38/38 2.00 × 10−4 2.00 × 10−4 2.00 × 10−4  
83ToBr54  3 254.1–4 138.8 130/130/130 3.00 × 10−4 1.70 × 10−4 6.07 × 10−4  
99Toth115  995.98–4 039.2 794/790/790 3.00 × 10−4 1.02 × 10−4 3.12 × 10−3  
73CaFlGuAm174  2 933.7–4 250.9 1 315/1 315/1 315 5.00 × 10−4 3.57 × 10−4 2.87 × 10−2  
98BaGoCaGa58  0.741 68–400.22 437/410/408 5.00 × 10−4 1.21 × 10−3 1.26 × 10−2  
07JeDaReTy175  4 200.1–6 599.7 5 310/5 310/5 309 5.00 × 10−4 5.62 × 10−4 3.44 × 10−2  
14OsKaPrPe13  7 185.4–7 185.6 5/5/5 5.00 × 10−4 2.69 × 10−4 6.45 × 10−4  
17BiWaLoLo23  1 850.4–4 340.0 4 129/143/143 5.00 × 10−4 1.37 × 10−4 6.57 × 10−3  
17LoBiWa24  1 850.4–3 999.7 4 016/4 015/4 015 5.00 × 10−4 1.00 × 10−4 2.16 × 10−2  
20CaKaYaKy43  7 474.6–7 613.9 9/9/9 5.00 × 10−4 2.65 × 10−3 8.20 × 10−3  
81Partridg176  16.799–47.055 26/26/26 6.00 × 10−4 6.35 × 10−4 4.43 × 10−3  
07MiLeKaCa177  5 912.6–7 014.9 1 374/1 371/1 368 6.00 × 10−4 8.24 × 10−4 3.37 × 10−2  
96BrPl57  55.405–4 044.9 592/592/592 7.00 × 10−4 7.97 × 10−4 9.87 × 10−3  
83PiCoCaFl178  494.26–4 004.7 2 597/2 592/2 591 8.00 × 10−4 7.06 × 10−4 4.60 × 10−2  
04CoPiVeLa179  58.019–475.09 1 708/1 704/1 704 9.00 × 10−4 3.50 × 10−4 8.57 × 10−3  
12MiNaNiVa80  6 630.1–8 941.5 516/509/509 9.00 × 10−4 1.66 × 10−3 1.66 × 10−2  
69BePoTo46  45.407–84.323 2/2/2 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3  
69BePoTo_S246  83.280–1 340.7 42/42/30 1.00 × 10−2 1.31 × 10−2 4.84 × 10−2  
69BePoTo_S346  207.50–432.30 3/3/0 1.00 × 10−2 0.00e+00 0.00e+00  
78KaKaKy180  32.955–713.79 416/416/416 1.00 × 10−3 7.06 × 10−4 3.16 × 10−2  
80KaKy53  53.445–729.21 427/427/425 1.00 × 10−3 7.47 × 10−4 3.80 × 10−2  
86MaChCaFl181  6 443.1–7 830.3 381/381/381 1.00 × 10−3 2.16 × 10−4 3.28 × 10−2 0.999 999 901 82 
98EsWaHoRo182  720.10–1 397.1 737/737/737 1.00 × 10−3 7.06 × 10−4 2.42 × 10−2  
98Toth183  590.60–851.25 49/49/49 1.00 × 10−3 1.29 × 10−4 1.07 × 10−3  
99VaClByLa184  1 842.1–2 205.2 63/63/63 1.00 × 10−3 1.00 × 10−3 3.40 × 10−3 0.999 999 741 86 
99ZoPoTeLo185  933.37–2 500.3 6 810/6 774/6 695 1.00 × 10−3 7.41 × 10−4 4.68 × 10−2  
00ZoPoTeSh60  2 497.5–5 987.2 9 613/9 602/9 444 1.00 × 10−3 2.07 × 10−3 4.88 × 10−2  
02MiTyStAl186  4 200.1–6 244.7 3 126/3 122/3 122 1.00 × 10−3 1.05 × 10−3 2.08 × 10−2  
02TeBeZoSh187  4 878.2–7 552.5 5 589/5 586/5 552 1.00 × 10−3 2.82 × 10−3 3.77 × 10−2 1.000 001 055 60 
02TeBeZoSh_S2187  5 540.0–6 997.1 682/682/650 5.00 × 10−3 5.70 × 10−3 4.61 × 10−2  
04ShZoPoTe64  404.19–1 876.2 787/786/769 1.00 × 10−3 4.82 × 10−3 3.99 × 10−2  
05ToTe188  7 423.7–9 595.4 4 221/4 221/4 219 1.00 × 10−3 6.27 × 10−4 4.43 × 10−2  
08ToTe189  9 502.0–14 495 10 632/10 097/10 038 1.00 × 10−3 1.04 × 10−4 4.94 × 10−2  
09LiNaKaCa190  5 908.7–6 725.7 1 166/1 080/1 080 1.00 × 10−3 7.00 × 10−4 1.70 × 10−2  
11MiKaWaCa76  7 408.2–7 919.2 2 045/2 022/2 014 1.00 × 10−3 6.75 × 10−4 2.86 × 10−2  
12LeMiMoKa79  6 885.8–7 405.9 2 518/2 460/2 458 1.00 × 10−3 4.73 × 10−4 1.58 × 10−2  
13MiSeSiVa9  15 135–15 560 155/150/149 1.00 × 10−3 2.01 × 10−3 2.26 × 10−2  
14CoMaPi11  40.517–694.49 6 757/2 464/2 332 1.00 × 10−3 7.00 × 10−4 4.00 × 10−2  
14ReOuMiWa14  6 452.9–9 392.5 8 442/8 002/7 994 1.00 × 10−3 6.77 × 10−4 3.28 × 10−2  
15CaMiLoKa16  7 911.2–8 336.7 2 056/1 968/1 962 1.00 × 10−3 1.00 × 10−3 4.29 × 10−2  
16MiLeKaMo22  5 851.9–6 670.9 2 398/1 841/1 840 1.00 × 10−3 7.70 × 10−4 2.21 × 10−2  
17MoMiKaBe25  7 443.6–7 921.2 1 596/1 577/1 575 1.00 × 10−3 4.12 × 10−4 2.20 × 10−2  
19MiKaVaMo38  5 694.8–5 990.2 1 051/1 043/1 042 1.00 × 10−3 5.71 × 10−4 1.59 × 10−2  
19MiMoKaKa39  5 693.3–5 850.1 514/510/510 1.00 × 10−3 5.73 × 10−4 1.38 × 10−2  
19ReThReMi40  6 530.1–7 912.1 1 871/1 840/1 840 1.00 × 10−3 7.88 × 10−4 2.00 × 10−2  
76FlCaMa50  2 710.2–6 184.7 3 782/3 780/3 602 1.50 × 10−3 2.83 × 10−3 4.73 × 10−2  
00BrPl191  13 818–13 932 6/6/6 1.50 × 10−3 4.77 × 10−4 1.08 × 10−2  
14LiNaKaCa12  5 855.7–6 801.6 818/709/709 1.50 × 10−3 1.50 × 10−3 1.21 × 10−2  
97PoZoViTe192  373.65–933.62 3 628/3 223/3 096 2.00 × 10−3 1.00 × 10−3 4.75 × 10−2  
98PoZoViTe193  13 239–15 995 2 543/736/733 2.00 × 10−3 2.74 × 10−3 4.21 × 10−2  
02ScLeCaBr61  13 201–16 499 3 072/3 014/2 930 2.00 × 10−3 1.09 × 10−3 4.54 × 10−2  
03ToTeShZo62  9 001.3–12 764 6 378/6 355/6 325 2.00 × 10−3 8.19 × 10−4 4.74 × 10−2  
04MaRoMiNa194  6 131.4–26 138 2 375/2 342/2 333 2.00 × 10−3 1.02 × 10−3 4.36 × 10−2  
08LiHo195  10 671–10 852 32/32/32 2.00 × 10−3 2.13 × 10−3 2.34 × 10−2  
13LeMiMoKa7  5 851.9–6 606.9 3 096/2 916/2 911 2.00 × 10−3 6.43 × 10−4 2.59 × 10−2  
18TaMiWaLi36  12 278–12 891 1 590/1 518/1 508 2.00 × 10−3 1.58 × 10−3 4.90 × 10−2  
19LiLiZhWa37  12 055–12 260 674/655/651 2.00 × 10−3 1.87 × 10−3 4.93 × 10−2  
20compl 38.532–7 773.4 224/224/224 2.00 × 10−3 3.23 × 10−4 1.67 × 10−2  
20compl_S2 4.330 0–25 197 13 217/13 216/13 188 2.00 × 10−2 3.70 × 10−3 4.82 × 10−2  
02ToTeBrCa196  11 788–13 553 1 906/1 906/1 839 2.50 × 10−3 1.05 × 10−3 4.81 × 10−2  
67HaDo45  18.570–121.91 73/73/73 3.00 × 10−3 3.21 × 10−3 2.92 × 10−2  
76FlGi51  12.683–38.785 11/11/11 3.00 × 10−3 1.36 × 10−3 7.15 × 10−3  
86MaChCaFlb55  13 239–15 964 1 980/1 979/1 890 3.00 × 10−3 3.00 × 10−3 4.08 × 10−2  
02BrToDu197  9 676.9–11 383 2 594/2 594/2 592 3.00 × 10−3 5.91 × 10−4 4.20 × 10−2  
05CoBeCaCo198  373.65–1 999.8 16 546/13 223/12 943 3.00 × 10−3 3.81 × 10−3 4.99 × 10−2  
05ToNaZoSh199  9 250.2–25 232 15 621/15 511/15 393 3.00 × 10−3 2.20 × 10−3 4.94 × 10−2  
06ZoOvShPo67  404.19–4 272.8 1 461/1 460/1 457 3.00 × 10−3 6.66 × 10−3 3.99 × 10−2  
07MaToCa68  11 523–12 806 1 553/1 507/1 448 3.00 × 10−3 2.45 × 10−3 4.38 × 10−2  
12DoTeOrCh78  6 530.1–6 949.7 304/304/304 3.00 × 10−3 9.61 × 10−4 1.61 × 10−2 1.000 002 800 28 
15MiSeSi19  15 135–16 005 495/338/332 3.00 × 10−3 3.52 × 10−3 3.63 × 10−2  
18SeSiVaLa35  16 609–17 061 216/214/212 3.00 × 10−3 3.00 × 10−4 1.00 × 10−2  
19SeSiLaDu41  19 560–19 920 91/80/80 3.00 × 10−3 3.12 × 10−4 2.55 × 10−3  
89ChMaFlCa200  9 603.7–11 481 2 393/2 393/2 393 4.00 × 10−3 7.71 × 10−4 4.34 × 10−2  
99CaJeVaBe201  13 185–21 390 5 698/5 693/5 540 4.00 × 10−3 1.27 × 10−3 4.65 × 10−2  
00ByNaVo59  18 026–19 106 112/112/108 4.00 × 10−3 3.58 × 10−3 3.22 × 10−2  
00ZoBePoTe202  21 411–25 225 297/297/252 4.00 × 10−3 2.61 × 10−3 4.07 × 10−2  
05DuGhZoTo203  25 196–25 337 47/47/47 4.00 × 10−3 4.00 × 10−3 2.50 × 10−2  
06MaNaKaBy204  11 335–12 843 1 280/1 277/1 268 4.00 × 10−3 2.30 × 10−3 4.96 × 10−2  
08CaMiLi205  12 747–13 558 1 121/1 096/1 076 4.00 × 10−3 3.65 × 10−3 4.98 × 10−2  
14SiSeVaBy15  15 529–16 062 440/438/433 4.00 × 10−3 2.92 × 10−3 3.22 × 10−2  
69FrRa47  3 355.7–4 025.4 476/476/438 5.00 × 10−3 6.03 × 10−3 4.75 × 10−2  
73PuRa206  3 261.0–4 193.9 33/33/30 5.00 × 10−3 9.93 × 10−3 4.64 × 10−2  
77FlCaMaGu207  4 200.2–5 554.9 448/445/445 5.00 × 10−3 2.06 × 10−3 3.54 × 10−2  
79FlCaNaCh208  8 060.1–9 366.6 1 219/1 219/1 195 5.00 × 10−3 3.65 × 10−3 4.66 × 10−2  
80CaFlMa209  5 937.4–6 443.1 79/79/79 5.00 × 10−3 2.16 × 10−3 4.26 × 10−2  
85CaFlMaCh210  16 548–25 173 989/989/986 5.00 × 10−3 2.16 × 10−3 4.47 × 10−2  
88MaChFlCa211  8 057.9–9 481.8 1 667/1 667/1 667 5.00 × 10−3 7.65 × 10−4 4.46 × 10−2  
92DaMaCaFl212  1 092.5–1 844.0 159/159/159 5.00 × 10−3 2.58 × 10−3 2.44 × 10−2  
92DaMaCaFlb213  855.91–1 848.8 216/216/216 5.00 × 10−3 2.48 × 10−3 2.97 × 10−2  
92MaDaCaFl214  811.56–1 265.1 80/80/80 5.00 × 10−3 5.17 × 10−3 2.44 × 10−2  
96PoBuGuZh215  407.31–921.40 585/585/585 5.00 × 10−3 5.00 × 10−4 2.51 × 10−2  
97PoTeBe216  385.08–874.26 353/353/353 5.00 × 10−3 5.00 × 10−4 2.83 × 10−2  
01ByNaSiVo217  1 027.5–13 936 106/104/104 5.00 × 10−3 1.18 × 10−3 1.42 × 10−2  
03NaCa218  9 518.9–10 009 641/637/635 5.00 × 10−3 2.53 × 10−3 4.32 × 10−2  
05KaMaNaCa219  13 312–13 378 273/273/258 5.00 × 10−3 2.96 × 10−3 3.41 × 10−2  
06PePoSeSi220  9 388.0–9 451.2 96/95/91 5.00 × 10−3 7.01 × 10−3 4.79 × 10−2  
06PePoSeSi_S2220  9 392.5–9 450.6 47/46/34 1.00 × 10−2 2.01 × 10−2 4.96 × 10−2  
06ZoShPoBa221  2 000.2–4 749.9 15 045/14 020/13 745 5.00 × 10−3 7.15 × 10−3 4.91 × 10−2  
12Boyarkin222  11 174–11 333 3/3/3 5.00 × 10−3 1.00 × 10−2 2.98 × 10−2  
12VaMiSeSi83  13 459–14 440 446/439/438 5.00 × 10−3 3.67 × 10−3 4.41 × 10−2  
18MiSeSi30  16 470–17 180 721/702/695 5.00 × 10−3 3.19 × 10−3 4.57 × 10−2  
18SiSePoBy34  19 488–20 495 461/459/455 5.00 × 10−3 4.38 × 10−3 3.95 × 10−2  
18CzFuCsEc27  6 600.5–7 048.5 4 080/4 080/4 076 6.00 × 10−3 2.20 × 10−3 4.43 × 10−2  
75ToMa223  6 952.3–7 508.4 852/852/852 7.00 × 10−3 6.63 × 10−3 4.39 × 10−2  
79WiScGeGi52  13 584–13 987 62/62/59 7.00 × 10−3 3.42 × 10−3 2.14 × 10−2 1.000 000 631 49 
97PoZoTeLo224  928.68–2 323.7 1 514/1 514/1 513 8.00 × 10−3 8.00 × 10−4 3.43 × 10−2  
11BeMiCa225  13 543–14 073 174/174/170 8.00 × 10−3 7.70 × 10−3 3.53 × 10−2  
18RuFoScJo32  6 250.1–6 666.5 2 854/2 854/2 810 1.00 × 10−2 1.02 × 10−2 4.88 × 10−2  
97FlCaByNa226  11 523–12 837 1 656/1 619/1 607 2.00 × 10−2 2.00 × 10−3 2.84 × 10−2  
08ZoShOvPo116  4 251.4–12 361 28 885/28 761/27 808 2.00 × 10−2 1.07 × 10−2 4.98 × 10−2  
20extra3  554.16–21 411 138/138/127 2.00 × 10−2 1.00 × 10−2 3.51 × 10−2  
08GrMaZoSh119  13 531–17 448 413/405/386 3.00 × 10−2 2.69 × 10−2 4.83 × 10−2  
09GrBoRiMa120  10 305–14 619 470/467/429 3.00 × 10−2 3.00 × 10−2 4.13 × 10−2  
Segment tagRangeA/N/VESUMSULSURecalib. Factor
69Kukolich126  0.741 68–0.741 68 1/1/1 1.67 × 10−9 1.67 × 10−9 1.67 × 10−9  
09CaPuHaGa127  10.715–20.704 7/7/7 1.67 × 10−8 1.67 × 10−8 2.67 × 10−8  
71Huiszoon128  6.114 6–6.114 6 1/1/1 5.00 × 10−8 1.10 × 10−7 1.10 × 10−7  
95MaKr56  18.577–18.577 1/1/1 6.67 × 10−8 9.69 × 10−8 9.69 × 10−8  
20ToFuSiCs44  7 012.7–7 350.0 156/156/156 1.10 × 10−7 1.10 × 10−7 3.34 × 10−7  
20ToFuSiCs_S244  23.794–23.794 1/1/1 2.50 × 10−7 2.50 × 10−7 2.50 × 10−7  
06GoMaGuKn129  6.114 6–18.577 12/12/12 1.33 × 10−7 1.33 × 10−7 1.64 × 10−6  
05Golubiat65  6.114 6–6.114 6 1/1/1 1.67 × 10−7 4.56 × 10−7 4.56 × 10−7  
07KoTrGoPa130  10.715–12.682 3/3/3 1.67 × 10−7 4.62 × 10−7 1.57 × 10−6  
13TrKoViPa131  12.682–16.294 7/7/6 3.17 × 10−7 4.81 × 10−7 5.87 × 10−7  
18KaStCaDa29  7 164.9–7 185.6 8/8/8 4.00 × 10−7 4.00 × 10−7 4.00 × 10−7  
11Koshelev72  25.085–25.085 1/1/1 4.67 × 10−7 4.67 × 10−7 4.67 × 10−7  
89BaGoKhHa132  6.114 6–6.114 6 1/1/1 5.00 × 10−7 5.00 × 10−7 5.00 × 10−7  
18ChHuTaSu26  12 622–12 665 6/6/6 8.00 × 10−7 8.00 × 10−7 2.00 × 10−6  
71StBe133  0.741 68–6.114 6 3/3/3 1.00 × 10−6 2.30 × 10−6 8.29 × 10−6  
73BlBrEdKn134  357.52–357.52 1/1/1 1.00 × 10−6 1.00 × 10−6 1.00 × 10−6  
83HeMeLu135  13.013–32.954 7/7/7 1.00 × 10−6 1.07 × 10−6 9.61 × 10−6  
83MeLuHe136  16.797–32.954 5/5/5 1.00 × 10−6 1.00 × 10−6 4.94 × 10−6  
80Kuze137  0.400 57–4.002 6 5/5/5 1.33 × 10−6 3.34 × 10−6 8.20 × 10−6  
48GoWeHiSt138  0.741 69–0.741 69 1/1/1 1.67 × 10−6 5.14 × 10−6 5.14 × 10−6  
98ChPaEv139  88.650–88.650 1/1/1 1.67 × 10−6 2.46 × 10−6 2.46 × 10−6  
87BaAlAlPo140  14.199–19.077 6/6/6 1.70 × 10−6 1.70 × 10−6 1.70 × 10−6  
91AmSc141  8.253 7–11.835 5/5/5 2.00 × 10−6 2.00 × 10−6 2.00 × 10−6  
97NaLoInNo142  118.32–119.07 5/5/5 2.03 × 10−6 2.03 × 10−6 4.33 × 10−6  
95MaOdIwTs143  18.577–162.44 139/139/138 2.50 × 10−6 2.50 × 10−6 2.15 × 10−5  
12YuPeDrMa144  9.795 6–90.767 221/217/217 2.50 × 10−6 2.67 × 10−6 6.99 × 10−5  
12YuPeDrMa_S2144  51.326–694.49 4 288/4 276/4 264 2.00 × 10−3 3.76 × 10−4 3.33 × 10−2  
09CaPuBuTa145  36.604–53.444 9/9/9 3.00 × 10−6 3.00 × 10−6 4.86 × 10−6  
06MaToNaMo112  28.685–165.31 104/104/104 3.14 × 10−6 4.32 × 10−6 2.44 × 10−5  
83BuFeKaPo146  16.797–21.545 5/5/5 3.34 × 10−6 3.34 × 10−6 6.67 × 10−6  
13YuPeDr10  17.690–67.209 182/182/182 3.34 × 10−6 3.34 × 10−6 3.34 × 10−5  
91PeAnHeLu147  4.657 0–19.804 30/30/30 3.40 × 10−6 3.40 × 10−6 2.17 × 10−5  
72LuHeCoGo148  6.114 6–25.085 14/14/14 5.00 × 10−6 5.00 × 10−6 5.00 × 10−6  
95Pearson149  4.330 0–17.220 9/9/9 5.00 × 10−6 5.00 × 10−6 1.37 × 10−5  
11DrYuPeGu70  82.862–90.843 26/26/25 5.00 × 10−6 6.67 × 10−6 1.62 × 10−5  
00ChPePiMa150  28.054–52.511 17/17/17 8.00 × 10−6 8.00 × 10−6 1.89 × 10−5  
79HeJoMc151  0.072 049–0.072 049 1/1/1 1.00 × 10−5 1.00 × 10−5 1.00 × 10−5  
79HeJoMc_S2151  1 660.5–1 677.2 2/2/2 1.00 × 10−3 7.74 × 10−4 7.77 × 10−4  
20virt 0.000 000–0.000 010 924/924/924 1.00 × 10−5 1.00 × 10−5 1.00 × 10−5  
20virt_S2 0.000 010–0.000 100 353/353/353 1.00 × 10−4 1.00 × 10−4 1.00 × 10−4  
20virt_S3 0.000 100–0.000 999 530/530/530 1.00 × 10−3 1.00 × 10−3 1.49 × 10−3  
20virt_S4 0.001 004–0.009 997 709/709/709 1.00 × 10−2 1.00 × 10−2 1.80 × 10−2  
19VaTrDoKa42  6 071.4–6 079.9 21/20/19 1.50 × 10−5 2.00 × 10−5 7.30 × 10−4  
51Jen152  0.741 69–0.741 69 1/1/1 2.00 × 10−5 2.00 × 10−5 2.00 × 10−5  
72FlCaVa153  0.741 68–25.085 7/7/7 2.00 × 10−5 1.00 × 10−5 2.74 × 10−5  
06JoPaZeCo154  1 485.1–1 486.2 2/1/1 2.00 × 10−5 1.00 × 10−4 1.00 × 10−4  
13LuLiWaLi8  12 573–12 752 73/73/73 2.00 × 10−5 2.20 × 10−5 5.24 × 10−4  
05HoAnAlPi155  212.56–594.95 165/165/163 3.00 × 10−5 1.62 × 10−5 7.58 × 10−4  
87BeKoPoTr156  7.761 6–19.850 5/5/5 3.34 × 10−5 3.34 × 10−5 4.63 × 10−5  
70StSt49  18.577–18.577 1/1/1 3.40 × 10−5 6.26 × 10−6 6.26 × 10−6  
96Belov157  28.054–30.792 5/5/5 3.40 × 10−5 9.80 × 10−6 1.59 × 10−5  
54KiGo158  6.114 6–6.114 6 1/1/1 5.00 × 10−5 4.04 × 10−5 4.04 × 10−5  
83Guelachv159  1 066.2–2 296.7 1 179/1 178/1 162 5.00 × 10−5 2.11 × 10−4 4.86 × 10−3 0.999 999 843 29 
96BrMa160  5 206.3–5 396.5 28/28/28 5.00 × 10−5 6.05 × 10−5 2.50 × 10−4  
18DeGaViRe28  3 645.3–3 976.6 315/315/314 5.00 × 10−5 1.00 × 10−4 3.24 × 10−3  
91Toth161  1 072.6–2 265.3 739/739/738 6.00 × 10−5 1.06 × 10−4 4.84 × 10−3  
91Toth_S2161  1 06 6.2–2 582.6 235/235/235 2.00 × 10−4 2.34 × 10−4 3.80 × 10−3  
91Toth_S3161  1 229.4–2 458.2 38/38/38 2.00 × 10−3 1.01 × 10−3 2.87 × 10−2  
97MiTyKeWi162  2 507.2–4 402.8 940/932/925 6.00 × 10−5 3.51 × 10−4 5.75 × 10−3  
95PaHo163  177.86–519.59 246/246/245 7.00 × 10−5 8.31 × 10−5 1.94 × 10−3  
93Toth164  1 316.1–4 260.4 582/582/582 8.00 × 10−5 9.00 × 10−5 1.26 × 10−3  
93Toth_S2164  1 30 4.3–4 252.2 273/273/273 5.00 × 10−4 2.31 × 10−4 9.40 × 10−3  
93Toth_S3164  1 381.6–4 006.5 27/27/27 5.00 × 10−3 1.26 × 10−3 4.49 × 10−3  
93Toth_S4164  4 077.7–4 106.9 2/2/2 2.00 × 10−2 1.00 × 10−2 1.00 × 10−2  
93Tothb165  1 881.1–4 306.7 1 064/1 064/1 064 8.00 × 10−5 9.65 × 10−5 1.48 × 10−3  
93Tothb_S2165  1 820.8–4 506.2 1 070/1 070/1 070 2.00 × 10−4 2.08 × 10−4 1.06 × 10−2  
93Tothb_S3165  1 898.6–4 458.8 151/151/151 2.00 × 10−3 1.27 × 10−3 3.81 × 10−2  
93Tothb_S4165  3 529.7–4 468.7 5/5/5 2.00 × 10−2 1.00 × 10−2 1.00 × 10−2  
70EvWeMaEl48  127.48–357.52 2/2/2 1.00 × 10−4 1.22 × 10−4 1.43 × 10−4  
82KaJoHo166  501.57–713.79 70/70/67 1.00 × 10−4 1.47 × 10−4 4.70 × 10−3  
85BrTo113  1 323.3–1 992.7 71/71/71 1.00 × 10−4 5.09 × 10−5 1.73 × 10−3 0.999 999 936 34 
94Tothb167  5 754.1–7 671.7 972/971/970 1.00 × 10−4 1.16 × 10−4 6.30 × 10−3  
94Tothb_S2167  5 750.9–7 919.9 2 045/2 043/2 034 3.00 × 10−4 2.55 × 10−4 2.00 × 10−2  
94Tothb_S3167  5 773.0–7 971.9 522/521/521 3.00 × 10−3 1.00 × 10−3 1.50 × 10−2  
03ZoVa63  610.17–4 044.9 889/763/762 1.00 × 10−4 1.54 × 10−4 5.84 × 10−3  
05PtSmSh66  5 042.7–5 58 5.3 407/407/407 1.00 × 10−4 2.93 × 10−5 9.42 × 10−4  
15SiHo20  7 71 4.8–7 919.9 71/71/71 1.00 × 10−4 1.13 × 10−4 1.77 × 10−3  
18MiMoKaKa168  6 667.6–7 449.2 3 550/3 508/3 505 1.00 × 10−4 2.43 × 10−4 9.82 × 10−3  
18ScCiYaGi33  6 804.4–7 170.3 572/572/563 1.00 × 10−4 1.69 × 10−4 4.97 × 10−3  
85Johns169  18.578–349.76 258/258/258 2.00 × 10−4 8.60 × 10−5 4.36 × 10−3  
86GuRa170  5 103.3–5 547.1 234/234/234 2.00 × 10−4 1.29 × 10−4 1.96 × 10−2 0.999 999 933 57 
94Toth171  11 734–12 638 44/44/44 2.00 × 10−4 9.28 × 10−4 2.09 × 10−3  
94Toth_S2171  11 611–12 737 480/480/478 3.00 × 10−4 7.65 × 10−4 1.94 × 10−2  
94Toth_S3171  11 638–12 752 250/250/249 3.00 × 10−3 1.35 × 10−3 3.33 × 10−2  
94Toth_S4171  11 880–11 934 3/3/3 3.00 × 10−2 1.00 × 10−2 1.00 × 10−2  
05Toth114  2 926.5–7 641.9 1 818/1 817/1 817 2.00 × 10−4 1.00 × 10−4 6.80 × 10−3  
08MiAlMeKl172  1 901.2–6 598.3 3 769/3 514/3 514 2.00 × 10−4 4.86 × 10−4 7.82 × 10−3  
15HuChTaWa173  11 906–12 562 38/38/38 2.00 × 10−4 2.00 × 10−4 2.00 × 10−4  
83ToBr54  3 254.1–4 138.8 130/130/130 3.00 × 10−4 1.70 × 10−4 6.07 × 10−4  
99Toth115  995.98–4 039.2 794/790/790 3.00 × 10−4 1.02 × 10−4 3.12 × 10−3  
73CaFlGuAm174  2 933.7–4 250.9 1 315/1 315/1 315 5.00 × 10−4 3.57 × 10−4 2.87 × 10−2  
98BaGoCaGa58  0.741 68–400.22 437/410/408 5.00 × 10−4 1.21 × 10−3 1.26 × 10−2  
07JeDaReTy175  4 200.1–6 599.7 5 310/5 310/5 309 5.00 × 10−4 5.62 × 10−4 3.44 × 10−2  
14OsKaPrPe13  7 185.4–7 185.6 5/5/5 5.00 × 10−4 2.69 × 10−4 6.45 × 10−4  
17BiWaLoLo23  1 850.4–4 340.0 4 129/143/143 5.00 × 10−4 1.37 × 10−4 6.57 × 10−3  
17LoBiWa24  1 850.4–3 999.7 4 016/4 015/4 015 5.00 × 10−4 1.00 × 10−4 2.16 × 10−2  
20CaKaYaKy43  7 474.6–7 613.9 9/9/9 5.00 × 10−4 2.65 × 10−3 8.20 × 10−3  
81Partridg176  16.799–47.055 26/26/26 6.00 × 10−4 6.35 × 10−4 4.43 × 10−3  
07MiLeKaCa177  5 912.6–7 014.9 1 374/1 371/1 368 6.00 × 10−4 8.24 × 10−4 3.37 × 10−2  
96BrPl57  55.405–4 044.9 592/592/592 7.00 × 10−4 7.97 × 10−4 9.87 × 10−3  
83PiCoCaFl178  494.26–4 004.7 2 597/2 592/2 591 8.00 × 10−4 7.06 × 10−4 4.60 × 10−2  
04CoPiVeLa179  58.019–475.09 1 708/1 704/1 704 9.00 × 10−4 3.50 × 10−4 8.57 × 10−3  
12MiNaNiVa80  6 630.1–8 941.5 516/509/509 9.00 × 10−4 1.66 × 10−3 1.66 × 10−2  
69BePoTo46  45.407–84.323 2/2/2 1.00 × 10−3 1.00 × 10−3 1.00 × 10−3  
69BePoTo_S246  83.280–1 340.7 42/42/30 1.00 × 10−2 1.31 × 10−2 4.84 × 10−2  
69BePoTo_S346  207.50–432.30 3/3/0 1.00 × 10−2 0.00e+00 0.00e+00  
78KaKaKy180  32.955–713.79 416/416/416 1.00 × 10−3 7.06 × 10−4 3.16 × 10−2  
80KaKy53  53.445–729.21 427/427/425 1.00 × 10−3 7.47 × 10−4 3.80 × 10−2  
86MaChCaFl181  6 443.1–7 830.3 381/381/381 1.00 × 10−3 2.16 × 10−4 3.28 × 10−2 0.999 999 901 82 
98EsWaHoRo182  720.10–1 397.1 737/737/737 1.00 × 10−3 7.06 × 10−4 2.42 × 10−2  
98Toth183  590.60–851.25 49/49/49 1.00 × 10−3 1.29 × 10−4 1.07 × 10−3  
99VaClByLa184  1 842.1–2 205.2 63/63/63 1.00 × 10−3 1.00 × 10−3 3.40 × 10−3 0.999 999 741 86 
99ZoPoTeLo185  933.37–2 500.3 6 810/6 774/6 695 1.00 × 10−3 7.41 × 10−4 4.68 × 10−2  
00ZoPoTeSh60  2 497.5–5 987.2 9 613/9 602/9 444 1.00 × 10−3 2.07 × 10−3 4.88 × 10−2  
02MiTyStAl186  4 200.1–6 244.7 3 126/3 122/3 122 1.00 × 10−3 1.05 × 10−3 2.08 × 10−2  
02TeBeZoSh187  4 878.2–7 552.5 5 589/5 586/5 552 1.00 × 10−3 2.82 × 10−3 3.77 × 10−2 1.000 001 055 60 
02TeBeZoSh_S2187  5 540.0–6 997.1 682/682/650 5.00 × 10−3 5.70 × 10−3 4.61 × 10−2  
04ShZoPoTe64  404.19–1 876.2 787/786/769 1.00 × 10−3 4.82 × 10−3 3.99 × 10−2  
05ToTe188  7 423.7–9 595.4 4 221/4 221/4 219 1.00 × 10−3 6.27 × 10−4 4.43 × 10−2  
08ToTe189  9 502.0–14 495 10 632/10 097/10 038 1.00 × 10−3 1.04 × 10−4 4.94 × 10−2  
09LiNaKaCa190  5 908.7–6 725.7 1 166/1 080/1 080 1.00 × 10−3 7.00 × 10−4 1.70 × 10−2  
11MiKaWaCa76  7 408.2–7 919.2 2 045/2 022/2 014 1.00 × 10−3 6.75 × 10−4 2.86 × 10−2  
12LeMiMoKa79  6 885.8–7 405.9 2 518/2 460/2 458 1.00 × 10−3 4.73 × 10−4 1.58 × 10−2  
13MiSeSiVa9  15 135–15 560 155/150/149 1.00 × 10−3 2.01 × 10−3 2.26 × 10−2  
14CoMaPi11  40.517–694.49 6 757/2 464/2 332 1.00 × 10−3 7.00 × 10−4 4.00 × 10−2  
14ReOuMiWa14  6 452.9–9 392.5 8 442/8 002/7 994 1.00 × 10−3 6.77 × 10−4 3.28 × 10−2  
15CaMiLoKa16  7 911.2–8 336.7 2 056/1 968/1 962 1.00 × 10−3 1.00 × 10−3 4.29 × 10−2  
16MiLeKaMo22  5 851.9–6 670.9 2 398/1 841/1 840 1.00 × 10−3 7.70 × 10−4 2.21 × 10−2  
17MoMiKaBe25  7 443.6–7 921.2 1 596/1 577/1 575 1.00 × 10−3 4.12 × 10−4 2.20 × 10−2  
19MiKaVaMo38  5 694.8–5 990.2 1 051/1 043/1 042 1.00 × 10−3 5.71 × 10−4 1.59 × 10−2  
19MiMoKaKa39  5 693.3–5 850.1 514/510/510 1.00 × 10−3 5.73 × 10−4 1.38 × 10−2  
19ReThReMi40  6 530.1–7 912.1 1 871/1 840/1 840 1.00 × 10−3 7.88 × 10−4 2.00 × 10−2  
76FlCaMa50  2 710.2–6 184.7 3 782/3 780/3 602 1.50 × 10−3 2.83 × 10−3 4.73 × 10−2  
00BrPl191  13 818–13 932 6/6/6 1.50 × 10−3 4.77 × 10−4 1.08 × 10−2  
14LiNaKaCa12  5 855.7–6 801.6 818/709/709 1.50 × 10−3 1.50 × 10−3 1.21 × 10−2  
97PoZoViTe192  373.65–933.62 3 628/3 223/3 096 2.00 × 10−3 1.00 × 10−3 4.75 × 10−2  
98PoZoViTe193  13 239–15 995 2 543/736/733 2.00 × 10−3 2.74 × 10−3 4.21 × 10−2  
02ScLeCaBr61  13 201–16 499 3 072/3 014/2 930 2.00 × 10−3 1.09 × 10−3 4.54 × 10−2  
03ToTeShZo62  9 001.3–12 764 6 378/6 355/6 325 2.00 × 10−3 8.19 × 10−4 4.74 × 10−2  
04MaRoMiNa194  6 131.4–26 138 2 375/2 342/2 333 2.00 × 10−3 1.02 × 10−3 4.36 × 10−2  
08LiHo195  10 671–10 852 32/32/32 2.00 × 10−3 2.13 × 10−3 2.34 × 10−2  
13LeMiMoKa7  5 851.9–6 606.9 3 096/2 916/2 911 2.00 × 10−3 6.43 × 10−4 2.59 × 10−2  
18TaMiWaLi36  12 278–12 891 1 590/1 518/1 508 2.00 × 10−3 1.58 × 10−3 4.90 × 10−2  
19LiLiZhWa37  12 055–12 260 674/655/651 2.00 × 10−3 1.87 × 10−3 4.93 × 10−2  
20compl 38.532–7 773.4 224/224/224 2.00 × 10−3 3.23 × 10−4 1.67 × 10−2  
20compl_S2 4.330 0–25 197 13 217/13 216/13 188 2.00 × 10−2 3.70 × 10−3 4.82 × 10−2  
02ToTeBrCa196  11 788–13 553 1 906/1 906/1 839 2.50 × 10−3 1.05 × 10−3 4.81 × 10−2  
67HaDo45  18.570–121.91 73/73/73 3.00 × 10−3 3.21 × 10−3 2.92 × 10−2  
76FlGi51  12.683–38.785 11/11/11 3.00 × 10−3 1.36 × 10−3 7.15 × 10−3  
86MaChCaFlb55  13 239–15 964 1 980/1 979/1 890 3.00 × 10−3 3.00 × 10−3 4.08 × 10−2  
02BrToDu197  9 676.9–11 383 2 594/2 594/2 592 3.00 × 10−3 5.91 × 10−4 4.20 × 10−2  
05CoBeCaCo198  373.65–1 999.8 16 546/13 223/12 943 3.00 × 10−3 3.81 × 10−3 4.99 × 10−2  
05ToNaZoSh199  9 250.2–25 232 15 621/15 511/15 393 3.00 × 10−3 2.20 × 10−3 4.94 × 10−2  
06ZoOvShPo67  404.19–4 272.8 1 461/1 460/1 457 3.00 × 10−3 6.66 × 10−3 3.99 × 10−2  
07MaToCa68  11 523–12 806 1 553/1 507/1 448 3.00 × 10−3 2.45 × 10−3 4.38 × 10−2  
12DoTeOrCh78  6 530.1–6 949.7 304/304/304 3.00 × 10−3 9.61 × 10−4 1.61 × 10−2 1.000 002 800 28 
15MiSeSi19  15 135–16 005 495/338/332 3.00 × 10−3 3.52 × 10−3 3.63 × 10−2  
18SeSiVaLa35  16 609–17 061 216/214/212 3.00 × 10−3 3.00 × 10−4 1.00 × 10−2  
19SeSiLaDu41  19 560–19 920 91/80/80 3.00 × 10−3 3.12 × 10−4 2.55 × 10−3  
89ChMaFlCa200  9 603.7–11 481 2 393/2 393/2 393 4.00 × 10−3 7.71 × 10−4 4.34 × 10−2  
99CaJeVaBe201  13 185–21 390 5 698/5 693/5 540 4.00 × 10−3 1.27 × 10−3 4.65 × 10−2  
00ByNaVo59  18 026–19 106 112/112/108 4.00 × 10−3 3.58 × 10−3 3.22 × 10−2  
00ZoBePoTe202  21 411–25 225 297/297/252 4.00 × 10−3 2.61 × 10−3 4.07 × 10−2  
05DuGhZoTo203  25 196–25 337 47/47/47 4.00 × 10−3 4.00 × 10−3 2.50 × 10−2  
06MaNaKaBy204  11 335–12 843 1 280/1 277/1 268 4.00 × 10−3 2.30 × 10−3 4.96 × 10−2  
08CaMiLi205  12 747–13 558 1 121/1 096/1 076 4.00 × 10−3 3.65 × 10−3 4.98 × 10−2  
14SiSeVaBy15  15 529–16 062 440/438/433 4.00 × 10−3 2.92 × 10−3 3.22 × 10−2  
69FrRa47  3 355.7–4 025.4 476/476/438 5.00 × 10−3 6.03 × 10−3 4.75 × 10−2  
73PuRa206  3 261.0–4 193.9 33/33/30 5.00 × 10−3 9.93 × 10−3 4.64 × 10−2  
77FlCaMaGu207  4 200.2–5 554.9 448/445/445 5.00 × 10−3 2.06 × 10−3 3.54 × 10−2  
79FlCaNaCh208  8 060.1–9 366.6 1 219/1 219/1 195 5.00 × 10−3 3.65 × 10−3 4.66 × 10−2  
80CaFlMa209  5 937.4–6 443.1 79/79/79 5.00 × 10−3 2.16 × 10−3 4.26 × 10−2  
85CaFlMaCh210  16 548–25 173 989/989/986 5.00 × 10−3 2.16 × 10−3 4.47 × 10−2  
88MaChFlCa211  8 057.9–9 481.8 1 667/1 667/1 667 5.00 × 10−3 7.65 × 10−4 4.46 × 10−2  
92DaMaCaFl212  1 092.5–1 844.0 159/159/159 5.00 × 10−3 2.58 × 10−3 2.44 × 10−2  
92DaMaCaFlb213  855.91–1 848.8 216/216/216 5.00 × 10−3 2.48 × 10−3 2.97 × 10−2  
92MaDaCaFl214  811.56–1 265.1 80/80/80 5.00 × 10−3 5.17 × 10−3 2.44 × 10−2  
96PoBuGuZh215  407.31–921.40 585/585/585 5.00 × 10−3 5.00 × 10−4 2.51 × 10−2  
97PoTeBe216  385.08–874.26 353/353/353 5.00 × 10−3 5.00 × 10−4 2.83 × 10−2  
01ByNaSiVo217  1 027.5–13 936 106/104/104 5.00 × 10−3 1.18 × 10−3 1.42 × 10−2  
03NaCa218  9 518.9–10 009 641/637/635 5.00 × 10−3 2.53 × 10−3 4.32 × 10−2  
05KaMaNaCa219  13 312–13 378 273/273/258 5.00 × 10−3 2.96 × 10−3 3.41 × 10−2  
06PePoSeSi220  9 388.0–9 451.2 96/95/91 5.00 × 10−3 7.01 × 10−3 4.79 × 10−2  
06PePoSeSi_S2220  9 392.5–9 450.6 47/46/34 1.00 × 10−2 2.01 × 10−2 4.96 × 10−2  
06ZoShPoBa221  2 000.2–4 749.9 15 045/14 020/13 745 5.00 × 10−3 7.15 × 10−3 4.91 × 10−2  
12Boyarkin222  11 174–11 333 3/3/3 5.00 × 10−3 1.00 × 10−2 2.98 × 10−2  
12VaMiSeSi83  13 459–14 440 446/439/438 5.00 × 10−3 3.67 × 10−3 4.41 × 10−2  
18MiSeSi30  16 470–17 180 721/702/695 5.00 × 10−3 3.19 × 10−3 4.57 × 10−2  
18SiSePoBy34  19 488–20 495 461/459/455 5.00 × 10−3 4.38 × 10−3 3.95 × 10−2  
18CzFuCsEc27  6 600.5–7 048.5 4 080/4 080/4 076 6.00 × 10−3 2.20 × 10−3 4.43 × 10−2  
75ToMa223  6 952.3–7 508.4 852/852/852 7.00 × 10−3 6.63 × 10−3 4.39 × 10−2  
79WiScGeGi52  13 584–13 987 62/62/59 7.00 × 10−3 3.42 × 10−3 2.14 × 10−2 1.000 000 631 49 
97PoZoTeLo224  928.68–2 323.7 1 514/1 514/1 513 8.00 × 10−3 8.00 × 10−4 3.43 × 10−2  
11BeMiCa225  13 543–14 073 174/174/170 8.00 × 10−3 7.70 × 10−3 3.53 × 10−2  
18RuFoScJo32  6 250.1–6 666.5 2 854/2 854/2 810 1.00 × 10−2 1.02 × 10−2 4.88 × 10−2  
97FlCaByNa226  11 523–12 837 1 656/1 619/1 607 2.00 × 10−2 2.00 × 10−3 2.84 × 10−2  
08ZoShOvPo116  4 251.4–12 361 28 885/28 761/27 808 2.00 × 10−2 1.07 × 10−2 4.98 × 10−2  
20extra3  554.16–21 411 138/138/127 2.00 × 10−2 1.00 × 10−2 3.51 × 10−2  
08GrMaZoSh119  13 531–17 448 413/405/386 3.00 × 10−2 2.69 × 10−2 4.83 × 10−2  
09GrBoRiMa120  10 305–14 619 470/467/429 3.00 × 10−2 3.00 × 10−2 4.13 × 10−2  
a

Tags denote segments used in this study. Bold entries are new segments compared to Part III. The column “Range” indicates the range (in cm−1) corresponding to validated wavenumbers within the transition list. A is the number of assigned transitions, N is the number of non-redundant lines (with distinct wavenumbers or labels), and V is the number of validated transitions obtained at the end of the xMARVEL analysis. In the heading of this table, ESU, MSU, and LSU denote the estimated, the median, and the largest segment uncertainties in cm−1, respectively. The value “0.00e+00” in the sixth column indicates that the associated LSU is undefined. Rows are arranged in the order of the ESUs with the restriction that the segments of the same data source should be listed consecutively.

The number of new transitions, with respect to the Part III dataset, cannot be determined in a reliable way due to two significant changes between the Part III and W2020 data. First, a large number of lines were relabeled at the time of compiling the extended dataset of this study. Second, during the revision of the Part III transitions, we often returned to the original assigned lines of the experimental data sources. This change also implies that originally unassigned transitions, labeled during the operation of the IUPAC TG, were removed from the related sources. Nevertheless, to avoid losing energy levels, those lines assigned in Part III and specifying unique rovibrational states were later reinstated in the database as an extra source, “20extra.”

The W2020 dataset includes 19 427 energy levels of which 19 204 relate to the PCs of the underlying SN, while the others are distributed among 117 FCs. Within these FCs, the number of isolated nodes is 91. After completion of the resistance analysis,87,107 13 676, 3657, 52, and 1819 rovibrational states of the PCs are specified as R+, R, S, and U, respectively. The maximum J value is 42 for the whole set of energy levels within the PCs. The energy of the highest-lying rovibrational state within the W2020 database is 41 143.8 cm−1. The W2020 empirical energy levels are presented in the supplementary material.

Since the publication of the Part III database in 2013, several tens of thousands of new lines were detected, remeasured, or reassigned. It is notable that they determine only about 800 new energy levels. Thus, only a small fraction of the measured transitions leads to new rovibrational states, even though the energies of the great majority of the bound rovibrational states of H216O are still not known empirically (H216O has close to one million bound rovibrational states,31 of which fewer than 20 000 are determined by experiments). In this sense, the most useful new sources are 18RuFoScJo,32 14CoMaPi,11 and 15CaMiLoKa,16 with 86, 79, and 63 new rovibrational states, respectively.

Table 2 shows the (empirical) vibrational band origins (VBOs) derived from the W2020 transition database. The uncertainties of the VBOs of W2020 are significantly better than those determined in Part III. The vibrational fundamentals of H216O are now known with remarkable accuracy (≈10−5 cm−1). In fact, all the VBOs with P = 1, 2, and 3, where P = 2v1 + v2 + 2v3 is the polyad number, have a similarly high precision. The complete list of the 240 vibrational bands along with the polyad numbers and the number of xMARVEL energy levels associated with the specific bands is given in the supplementary material.

TABLE 2.

Vibrational band origins (VBOs) of H216O present in the W2020 dataseta

(v1v2v3)VBO (cm−1)(v1v2v3)VBO (cm−1)(v1v2v3)VBO (cm−1)
(0 0 0) 0.0 (3 0 1) 13 830.936 71(35) (10 0 0) 29 810.850(30) 
(0 1 0) 1 594.746 168(28) (1 2 2) 13 910.895(12) (8 0 2) 31 071.570(30) 
(0 2 0) 3 151.629 947(19) (0 2 3) 14 066.193 67(20) (10 1 0) 31 207.090(30) 
(1 0 0) 3 657.053 161 6(76) (2 0 2) 14 221.158 9(10) (11 0 0) 31 909.679(30) 
(0 0 1) 3 755.928 574 3(69) (1 0 3) 14 318.812 66(63) (11 1 0) 33 144.709(30) 
(0 3 0) 4 666.789 706(72) (0 0 4) 14 537.504 2(11) (11 0 1) 33 835.222(30) 
(1 1 0) 5 234.975 47(49) (0 7 1) 13 835.372 4(10) (12 0 0) 33 835.249(30) 
(0 1 1) 5 331.267 211(10) (1 5 1) 14 647.977 3(18) (9 0 3) 35 509.677(30) 
(0 4 0) 6 134.015 33(42) (3 3 0) 15 108.238 6(20) (9 1 3) 36 739.777(30) 
(1 2 0) 6 775.093 03(15) (2 3 1) 15 119.028 5(13) (10 1 2) 36 740.597(30) 
(0 2 1) 6 871.520 14(26) (4 1 0) 15 344.503 2(19) (13 0 0) 35 585.957(30) 
(2 0 0) 7 201.540 31(10) (3 1 1) 15 347.957 06(10) (12 0 1) 35 586.007(30) 
(1 0 1) 7 249.818 36(13) (0 3 3) 15 534.709 4(10) (12 2 0) 36 179.317(30) 
(0 0 2) 7 445.045 33(12) (2 1 2) 15 742.803(11) (13 1 0) 36 684.047(30) 
(0 5 0) 7 542.382(21) (1 1 3) 15 832.765 66(30) (12 1 1) 36 684.877(30) 
(1 3 0) 8 273.975 85(47) (2 4 1) 16 546.318 6(30) (11 3 1) 37 309.847(30) 
(0 3 1) 8 373.851 39(11) (3 2 1) 16 821.631(10) (12 3 0) 37 311.277(30) 
(2 1 0) 8 761.582 19(11) (4 2 0) 16 823.318 5(30) (14 0 0) 37 122.697(30) 
(1 1 1) 8 806.998 91(11) (4 0 1) 16 898.842 19(30) (13 0 1) 37 122.717(30) 
(0 1 2) 9 000.136 6(13) (2 2 2) 17 227.379 5(30) (13 2 0) 37 765.647(30) 
(0 6 0) 8 869.951(20) (1 2 3) 17 312.551 3(30) (14 1 0) 38 153.247(30) 
(1 4 0) 9 724.187 3(20) (3 0 2) 17 458.214 1(30) (13 1 1) 38 153.307(30) 
(0 4 1) 9 833.584 06(10) (2 0 3) 17 495.528 0(30) (12 1 2) 40 044.567(42) 
(2 2 0) 10 284.364 9(10) (1 0 4) 17 748.106 7(30) (11 1 3) 40 044.706(32) 
(1 2 1) 10 328.730 20(17) (3 3 1) 18 265.820 6(15) (15 0 0) 38 462.517(30) 
(0 2 2) 10 521.759 7(10) (5 1 0) 18 392.777 5(30) (14 0 1) 38 462.537(30) 
(3 0 0) 10 599.687 27(21) (4 1 1) 18 393.314 1(15) (14 2 0) 39 123.767(30) 
(2 0 1) 10 613.363 3(16) (1 3 3) 18 758.633 4(10) (12 0 3) 40 704.191(32) 
(1 0 2) 10 868.875 93(21) (2 1 3) 18 989.959 9(30) (14 1 1) 39 390.217(30) 
(0 0 3) 11 032.405 16(10) (3 4 1) 19 679.201(17) (15 1 0) 39 390.257(30) 
(0 5 1) 11 242.777 2(10) (5 0 1) 19 781.103 0(11) (13 3 1) 40 262.036(32) 
(2 3 0) 11 767.388 3(10) (6 0 0) 19 781.322 6(30) (15 0 1) 39 574.537(30) 
(1 3 1) 11 813.207 17(15) (4 2 1) 19 865.288 2(74) (16 0 0) 39 574.547(30) 
(0 3 2) 12 007.776 2(14) (2 2 3) 20 442.777 4(30) (14 2 1) 40 226.301(19) 
(3 1 0) 12 139.315 73(10) (3 0 3) 20 543.128 6(30) (16 1 0) 40 370.547(42) 
(2 1 1) 12 151.254 86(10) (5 1 1) 21 221.827 3(30) (15 1 1) 40 370.816(32) 
(1 1 2) 12 407.662 22(19) (4 3 1) 21 314.448 2(30) (17 0 0) 40 437.227(42) 
(0 1 3) 12 565.006 85(11) (7 0 0) 22 529.291 9(84) (16 0 1) 40 437.246(32) 
(0 6 1) 12 586.229 9(20) (6 0 1) 22 529.440 6(17) (15 2 1) 41 121.641(32) 
(2 4 0) 13 204.787 2(27) (7 0 1) 25 120.277 8(17) (17 1 0) 40 984.637(42) 
(1 4 1) 13 256.158(15) (5 3 2) 27 502.660(30) (17 0 1) 40 945.728(32) 
(3 2 0) 13 640.716(20) (6 1 2) 27 574.910(30) (18 0 0) 40 947.487(42) 
(2 2 1) 13 652.653 90(50) (9 0 0) 27 540.690(10) (18 0 1) 41 100.088(32) 
(4 0 0) 13 828.277 3(17) (9 1 0) 28 934.140(30) (19 0 0) 41 101.337(42) 
(v1v2v3)VBO (cm−1)(v1v2v3)VBO (cm−1)(v1v2v3)VBO (cm−1)
(0 0 0) 0.0 (3 0 1) 13 830.936 71(35) (10 0 0) 29 810.850(30) 
(0 1 0) 1 594.746 168(28) (1 2 2) 13 910.895(12) (8 0 2) 31 071.570(30) 
(0 2 0) 3 151.629 947(19) (0 2 3) 14 066.193 67(20) (10 1 0) 31 207.090(30) 
(1 0 0) 3 657.053 161 6(76) (2 0 2) 14 221.158 9(10) (11 0 0) 31 909.679(30) 
(0 0 1) 3 755.928 574 3(69) (1 0 3) 14 318.812 66(63) (11 1 0) 33 144.709(30) 
(0 3 0) 4 666.789 706(72) (0 0 4) 14 537.504 2(11) (11 0 1) 33 835.222(30) 
(1 1 0) 5 234.975 47(49) (0 7 1) 13 835.372 4(10) (12 0 0) 33 835.249(30) 
(0 1 1) 5 331.267 211(10) (1 5 1) 14 647.977 3(18) (9 0 3) 35 509.677(30) 
(0 4 0) 6 134.015 33(42) (3 3 0) 15 108.238 6(20) (9 1 3) 36 739.777(30) 
(1 2 0) 6 775.093 03(15) (2 3 1) 15 119.028 5(13) (10 1 2) 36 740.597(30) 
(0 2 1) 6 871.520 14(26) (4 1 0) 15 344.503 2(19) (13 0 0) 35 585.957(30) 
(2 0 0) 7 201.540 31(10) (3 1 1) 15 347.957 06(10) (12 0 1) 35 586.007(30) 
(1 0 1) 7 249.818 36(13) (0 3 3) 15 534.709 4(10) (12 2 0) 36 179.317(30) 
(0 0 2) 7 445.045 33(12) (2 1 2) 15 742.803(11) (13 1 0) 36 684.047(30) 
(0 5 0) 7 542.382(21) (1 1 3) 15 832.765 66(30) (12 1 1) 36 684.877(30) 
(1 3 0) 8 273.975 85(47) (2 4 1) 16 546.318 6(30) (11 3 1) 37 309.847(30) 
(0 3 1) 8 373.851 39(11) (3 2 1) 16 821.631(10) (12 3 0) 37 311.277(30) 
(2 1 0) 8 761.582 19(11) (4 2 0) 16 823.318 5(30) (14 0 0) 37 122.697(30) 
(1 1 1) 8 806.998 91(11) (4 0 1) 16 898.842 19(30) (13 0 1) 37 122.717(30) 
(0 1 2) 9 000.136 6(13) (2 2 2) 17 227.379 5(30) (13 2 0) 37 765.647(30) 
(0 6 0) 8 869.951(20) (1 2 3) 17 312.551 3(30) (14 1 0) 38 153.247(30) 
(1 4 0) 9 724.187 3(20) (3 0 2) 17 458.214 1(30) (13 1 1) 38 153.307(30) 
(0 4 1) 9 833.584 06(10) (2 0 3) 17 495.528 0(30) (12 1 2) 40 044.567(42) 
(2 2 0) 10 284.364 9(10) (1 0 4) 17 748.106 7(30) (11 1 3) 40 044.706(32) 
(1 2 1) 10 328.730 20(17) (3 3 1) 18 265.820 6(15) (15 0 0) 38 462.517(30) 
(0 2 2) 10 521.759 7(10) (5 1 0) 18 392.777 5(30) (14 0 1) 38 462.537(30) 
(3 0 0) 10 599.687 27(21) (4 1 1) 18 393.314 1(15) (14 2 0) 39 123.767(30) 
(2 0 1) 10 613.363 3(16) (1 3 3) 18 758.633 4(10) (12 0 3) 40 704.191(32) 
(1 0 2) 10 868.875 93(21) (2 1 3) 18 989.959 9(30) (14 1 1) 39 390.217(30) 
(0 0 3) 11 032.405 16(10) (3 4 1) 19 679.201(17) (15 1 0) 39 390.257(30) 
(0 5 1) 11 242.777 2(10) (5 0 1) 19 781.103 0(11) (13 3 1) 40 262.036(32) 
(2 3 0) 11 767.388 3(10) (6 0 0) 19 781.322 6(30) (15 0 1) 39 574.537(30) 
(1 3 1) 11 813.207 17(15) (4 2 1) 19 865.288 2(74) (16 0 0) 39 574.547(30) 
(0 3 2) 12 007.776 2(14) (2 2 3) 20 442.777 4(30) (14 2 1) 40 226.301(19) 
(3 1 0) 12 139.315 73(10) (3 0 3) 20 543.128 6(30) (16 1 0) 40 370.547(42) 
(2 1 1) 12 151.254 86(10) (5 1 1) 21 221.827 3(30) (15 1 1) 40 370.816(32) 
(1 1 2) 12 407.662 22(19) (4 3 1) 21 314.448 2(30) (17 0 0) 40 437.227(42) 
(0 1 3) 12 565.006 85(11) (7 0 0) 22 529.291 9(84) (16 0 1) 40 437.246(32) 
(0 6 1) 12 586.229 9(20) (6 0 1) 22 529.440 6(17) (15 2 1) 41 121.641(32) 
(2 4 0) 13 204.787 2(27) (7 0 1) 25 120.277 8(17) (17 1 0) 40 984.637(42) 
(1 4 1) 13 256.158(15) (5 3 2) 27 502.660(30) (17 0 1) 40 945.728(32) 
(3 2 0) 13 640.716(20) (6 1 2) 27 574.910(30) (18 0 0) 40 947.487(42) 
(2 2 1) 13 652.653 90(50) (9 0 0) 27 540.690(10) (18 0 1) 41 100.088(32) 
(4 0 0) 13 828.277 3(17) (9 1 0) 28 934.140(30) (19 0 0) 41 101.337(42) 
a

(v1v2v3) denotes a specific vibrational band, where v1, v2, and v3 are the standard normal-mode quantum numbers describing the corresponding vibrational state. The uncertainties related to the last digits of the VBOs are provided in parentheses.

As an independent validation of the transition wavenumbers, the derived xMARVEL energies, and the labels collated into the W2020 database, systematic and mostly automated comparisons were made with the results of variational nuclear-motion computations31,109 and previously reported energies, mostly corresponding to effective Hamiltonian (EH) fits.11,179,227,228 These comparisons were executed in order to exclude those transitions from the W2020 database that would lead to energy levels with large deviations from well-established first-principles or EH values.

4.2.1. Comparison with first-principles energy levels

As described for task (c) of Sec. 3, the xMARVEL energy levels were matched with their first-principles counterparts listed in both the recent PoKaZaTeL31 and the older BT2109 energy lists. An important property of the W2020 rovibrational energy-level set is that it is complete up to 9724 cm−1. This increases the completeness limit from the Part III value of about 7500 cm−1.93 

The unsigned (energy) deviations (UD) for these datasets are plotted in Fig. 2. Although the median values of the UDs are 0.085 cm−1 and 0.110 cm−1 for PoKaZaTeL and BT2, respectively, the xMARVEL–PoKaZaTeL energy differences become significantly smaller than their xMARVEL–BT2 counterparts above 15 000 cm−1. Partitioning the 0–30 000 cm−1 range, where energy levels are present from both the PoKaZaTeL and the BT2 energy lists, into six intervals of equal widths of 5000 cm−1, the following median unsigned deviations are obtained for BT2/PoKaZaTeL: 0.07/0.03 cm−1, 0.09/0.06 cm−1, 0.11/0.11 cm−1, 0.13/0.09 cm−1, 0.23/0.05 cm−1, and 0.50/0.08 cm−1.

FIG. 2.

Unsigned deviations of the BT2 (blue dots, Ref. 109) and PoKaZaTeL (red squares, Ref. 31) states from their W2020 counterparts.

FIG. 2.

Unsigned deviations of the BT2 (blue dots, Ref. 109) and PoKaZaTeL (red squares, Ref. 31) states from their W2020 counterparts.

Close modal

These comparisons verify that each W2020 state has a variational counterpart with a deviation not larger than 1.5 cm−1 up to 30 000 cm−1. For the PoKaZaTeL dataset, the highest UD is 1.32 cm−1, but almost all UDs are well below 1 cm−1 in the 0–30 000 cm−1 range (see Fig. 2). The larger xMARVEL–PoKaZaTeL deviations (∼10 cm−1) above 30 000 cm−1 indicate that further empirical adjustment of the spectroscopic PES of H216O is required to secure that all first-principles PoKaZaTeL energies are below the venerable 0.03 cm−1 limit, characteristic of the 0–5000 cm−1 range. It is remarkable how well the PoKaZaTeL energies reproduce nearly all of their W2020 counterparts with deviations less than the level spacings, allowing unambiguous matching for all the xMARVEL states.

4.2.2. Comparison with 01LaCoCa–04CoPiVeLa

Following the first-principles validation, the empirical Part III and W2020 energy values were compared with those obtained in 01LaCoCa227 and 04CoPiVeLa.179 To find the appropriate pairs, we relied exclusively on the J values and the parities of the rovibrational states (that is, the normal-mode vibrational and rigid-rotor rotational labels were not utilized directly in the matching procedure).

The UDs for the (Part III, 01LaCoCa–04CoPiVeLa) and (W2020, 01LaCoCa–04CoPiVeLa) pairs are shown in Fig. 3 as a function of energy. The median and the largest UDs are 6.72 × 10−4/1.16 × 10−3 and 9.78 × 10−2/1.85 × 10−1 cm−1 for the W2020/Part III energy levels, respectively, implying that the W2020 dataset represents a significant improvement over the Part III database. These results also implicitly confirm the considerable accuracy of the energy levels of 01LaCoCa227 and 04CoPiVeLa.179 

FIG. 3.

Unsigned deviations of the W2020 and Part III3 energy levels, denoted with red squares and blue dots, respectively, from their 01LaCoCa227–04CoPiVeLa179 counterparts.

FIG. 3.

Unsigned deviations of the W2020 and Part III3 energy levels, denoted with red squares and blue dots, respectively, from their 01LaCoCa227–04CoPiVeLa179 counterparts.

Close modal

4.2.3. Comparison with Part III energy levels

Since the 01LaCoCa–04CoPiVeLa dataset does not cover the whole energy range represented by the W2020 database, it is important to evaluate the differences between the W2020 energy values and their Part III3 analogs. The list of those 213 Part III levels that could not be matched within 0.1 cm−1 can be found in the supplementary material. Some of the 213 states are not present in the W2020 database because they caused large deviations from the PoKaZaTeL energies and therefore were excluded from W2020. In most other cases, another subset of transitions, in conflict with those chosen in Part III, were selected based on the differences, down to a few times 0.01 cm−1, from the PoKaZaTeL energies.

The pattern of the UDs, calculated for the matched (Part III, W2020) twins, is shown in Fig. 4. The overwhelming majority of the UDs (14 370) are smaller than 0.005 cm−1, demonstrating that the Part III and the W2020 data agree adequately. Nonetheless, the number of levels with 0.005 cm−1 < UD ≤ 0.05 cm−1 and 0.05 cm−1 < UD ≤ 0.1 cm−1 (3778 and 124, respectively) indicates that the improvement over the Part III data is significant.

FIG. 4.

Unsigned deviations of the Part III3 energy levels from their W2020 counterparts. The states (both Part III and W2020) that could not be matched within 0.1 cm−1 are listed in the supplementary material.

FIG. 4.

Unsigned deviations of the Part III3 energy levels from their W2020 counterparts. The states (both Part III and W2020) that could not be matched within 0.1 cm−1 are listed in the supplementary material.

Close modal

4.2.4. Comparison with 14CoMaPi

Figure 5 displays the unsigned deviations of the 14CoMaPi11 energies from their W2020 counterparts. While the overall agreement is remarkably good, there are a few energy levels between 9000 and 13 000 cm−1 where the UDs are larger than 1.0 cm−1. Since the variationally computed energies, from both the PoKaZaTeL and the BT2 lists, confirm the W2020 energies to a few 0.01 cm−1, there is no reason to exclude the corresponding transitions from the xMARVEL analysis. In other words, the effective-Hamiltonian-based predictions appear to be slightly incorrect for these outliers, typically having Ka > 27. It is likely that these deviant effective-Hamiltonian-based estimates are due to the lack of transitions characterized with high J and Ka values used during the refinement of the spectroscopic parameters in the bending rotational Hamiltonian of 14CoMaPi.

FIG. 5.

Unsigned deviations of the 14CoMaPi11 energy levels from their W2020 counterparts.

FIG. 5.

Unsigned deviations of the 14CoMaPi11 energy levels from their W2020 counterparts.

Close modal

4.2.5. Comparison with JPL data

On the JPL (Jet Propulsion Laboratory) website228 a list of energy values is maintained, complemented with a timestamp of “Oct 31 21:54:56 2005,” which were deduced from a fit with an Euler-type Hamiltonian. The parameterization of this model is quite similar to that introduced in 05PiPeMi.229 

Figure 6 exhibits the unsigned deviations of the JPL data228 from their W2020 analogs up to J = 22. Although there are extrapolated energy values for J = 23 in the JPL set, we decided to ignore them during this analysis due to their considerably increased deviations. As can be seen from Fig. 6, most of the JPL energies reproduce well, better than 0.01 cm−1, their xMARVEL counterparts. Similar to 14CoMaPi,11 the W2020 energies corresponding to the outlier points of this figure were carefully checked and found to be dependable within the stated uncertainties, suggesting that there are issues for these energy values within the JPL list.

FIG. 6.

Unsigned deviations of the JPL228 energy levels from their W2020 counterparts.

FIG. 6.

Unsigned deviations of the JPL228 energy levels from their W2020 counterparts.

Close modal

Employing the W2020 database of H216O transitions, one can check the reliability of the data of the canonical spectroscopic database HITRAN 2016.88 The latest HITRAN version88 of the H216O line list contains 141 360 transitions in the range of 0.072–25 710.82 cm−1. Thus, HITRAN 201688 is more limited than W2020 both in its wavenumber range and in the number of validated transitions. While some of the W2020 data are not relevant for atmospheric modeling, most of them certainly are.

Since xMARVEL works with positions and quantum labels of the measured transitions and it results in empirical energy levels, we examine three types of information found in the HITRAN 2016 database. After the comparison of W2020 with HITRAN 2016, we could divide the issues found into the following four categories:

  • Inconsistency in the lower-state energies. Energy values of the lower states are given explicitly in HITRAN 2016. Although we are aware of the fact that, for HITRAN 2016, the transitions and the lower-state energies were collected from a number of different sources, the issue that the energy values of the same quantum state might differ by more than 0.1 cm−1 should be remedied. Therefore, we suggest that a single energy value should be used for the lower states, preferably taken from the W2020 dataset, in the next edition of the HITRAN database.

  • Forbidden transitions. Employing the rovibrational symmetry of the lower and upper states, 31 forbidden transitions were found in the HITRAN 2016 database of which 27 could be corrected. The forbidden lines found and our recommendations how to cure the problems observed are listed in the supplementary material.

  • Missing upper labels. The HITRAN 2016 database contains 5639 H216O transitions without labels for the upper states. The database indicates the missing labels with the descriptor −2. For 1463 cases, we found feasible W2020 recommendations. This relatively small number shows that, in most cases, these lines are likely taken from theoretical calculations, and thus, we need new measurements to properly characterize these transitions. The list of the HITRAN 2016 lines with missing labels and the corresponding W2020 recommendations can be found in the supplementary material.

  • Inaccurate line positions and labeling conflicts. The safest matching of the HITRAN 2016 and W2020 lines is achieved if it is governed by the quantum numbers of the lower and upper states given in HITRAN 2016 for the transition. We accept a match between a HITRAN 2016 line and its W2020 counterpart if their deviation is less than max(106×EHITRANup, δW2020), where EHITRANup is the energy value of the upper state in HITRAN 2016 and δW2020 is the uncertainty of the W2020 prediction. There are two possible reasons why the HITRAN 2016 and W2020 line positions do not match. It is possible that the positions appear to be different because W2020 uses a label different from the HITRAN 2016 one. In this case, the HITRAN 2016 lines should be reassigned and given the W2020 label of the upper state, assuming that the labels of the lower states agree. It is also possible that a HITRAN 2016 line comes from a theoretical source or that its W2020 counterpart is considerably more accurate. In this case, the next edition of HITRAN should use the W2020 line position. We found altogether 5539 problematic lines in HITRAN 2016. In 878 cases, the labels should be reassigned, while for the rest of the problematic cases, the line positions should be changed to the W2020 positions. It is important to emphasize that the largest intensity in these problematic cases is 5 × 10−24 cm molecule−1, which means that all strong lines in HITRAN 2016 are correct, though the W2020 line positions may have considerably higher accuracy.

A common feature of most present-day line-by-line spectroscopic databases, including HITRAN 2016,88 is that they are based almost exclusively on lines obtained from Doppler-broadened spectra. The usual Doppler linewidth is about 1–5 GHz, strongly limiting the accuracy of the line centers of the high-resolution spectra measured. Modern laser spectroscopy measurements, relying on frequency combs, cavity enhancement, saturation, and other recent experimental advances, allow Doppler-free measurement of certain lines. The accuracy of these measurements approaches the 1 kHz region, though, in principle, it can be even better.

As shown in Table 3, containing H216O rotational lines protected by certain bodies of the National Academies of Sciences, Engineering, and Medicine,230 the W2020 database contains several sources reporting transitions with an accuracy of 10 kHz or better. It is expected that more and more such highly accurate transitions will become available in the near future for water isotopologues and beyond.

TABLE 3.

Pure rotational lines of H216O under protection by the National Academies of Sciences, Engineering, and Medicine and their various experimental and empirical determinations as given in the W2020 dataset.a

f(NASEM) (GHz)(v1v2v3)JKa,Kc(v1v2v3)JKaKcf(xMARVEL) (GHz)f(expt.) (GHz)
22.235 (0 0 0)61,6 ← (0 0 0)52,3 22.235 079 85(5) 22.235 079 85(5)126  
183.310 (0 0 0)31,3 ← (0 0 0)22,0 183.310 087(1) 183.310 087(1)129  
   183.310 091(3)128  
   183.310 08(1)65  
   183.310 07(1)132  
   183.310 15(6)133  
   183.310 1(1)148  
325.153 (0 0 0)51,5 ← (0 0 0)42,2 325.152 901(3) 325.152 902(1)144  
   325.152 899(1)129  
   325.152 90(1)144  
   325.152 89(1)130  
   325.152 9(1)148  
380.197 (0 0 0)41,4 ← (0 0 0)32,1 380.197 359 8(1) 380.197 359 8(1)127  
   380.197 356(5)129  
   380.197 365(5)130  
   380.197 353(7)131  
439.151 (0 0 0)64,3 ← (0 0 0)55,0 439.150 794 8(3) 439.150 794 8(3)127  
   439.150 795(5)129  
   439.150 81(1)131  
448.001 (0 0 0)42,3 ← (0 0 0)33,0 448.001 077 5(5) 448.001 077 5(5)127  
   448.001 09(1)131  
474.689 (0 0 0)53,3 ← (0 0 0)44,0 474.689 108(1) 474.689 108(1)129  
   474.689 09(1)131  
556.936 (0 0 0)11,0 ← (0 0 0)10,1 556.935 987 7(3) 556.935 987 7(3)127  
   556.935 985(2)56  
   556.936 00(1)129  
620.700 (0 0 0)53,2 ← (0 0 0)44,1 620.700 954 9(6) 620.700 954 9(6)127  
   620.700 97(2)144  
752.033 (0 0 0)21,1 ← (0 0 0)20,2 752.03312(1) 752.033 11(1)72  
   752.033 10(7)143  
   752.033 1(1)144  
   752.033 2(1)148  
   752.033 3(2)153  
916.172 (0 0 0)42,2 ← (0 0 0)33,1 916.171447(9) 916.171 41(7)143  
   916.171 6(1)135  
   916.171 6(1)136  
970.315 (0 0 0)52,4 ← (0 0 0)43,1 970.315045(9) 970.315 02(2)135  
   970.315 02(2)136  
   970.315 05(3)144  
   970.314 97(7)143  
987.927 (0 0 0)20,2 ← (0 0 0)11,1 987.926792(8) 987.926 76(2)136  
   987.926 76(3)135  
   987.926 76(3)144  
   987.926 74(7)143  
   987.927 4(5)169  
1097.365 (0 0 0)31,2 ← (0 0 0)30,3 1097.364862(6) 1097.364 79(7)143  
   1097.364 79(8)145  
   1097.364 9(1)144  
1113.343 (0 0 0)11,1 ← (0 0 0)00,0 1113.343014(7) 1113.343 01(5)144  
   1113.342 96(7)143  
1153.127 (0 0 0)31,2 ← (0 0 0)22,1 1153.126820(6) 1153.126 82(7)143  
   1153.126 82(8)145  
1158.324 (0 0 0)63,4 ← (0 0 0)54,1 1158.32384(1) 1158.323 85(3)144  
   1158.323 84(5)144  
   1158.323 7(1)143  
1162.912 (0 0 0)32,1 ← (0 0 0)31,2 1162.911606(8) 1162.911 61(2)144  
   1162.911 59(7)143  
   1162.911 60(8)145  
1207.639 (0 0 0)42,2 ← (0 0 0)41,3 1207.638693(9) 1207.638 71(7)143  
   1207.638 73(7)144  
1228.789 (0 0 0)22,0 ← (0 0 0)21,1 1228.788725(7) 1228.788 77(7)143  
   1228.788 72(7)144  
1322.065 (0 0 0)62,5 ← (0 0 0)53,2 1322.06474(1) 1322.064 74(5)10  
   1322.064 80(7)143  
1410.618 (0 0 0)52,3 ← (0 0 0)51,4 1410.618033(9) 1410.618 07(7)143  
   1410.618 07(8)145  
   1410.618 2(5)169  
1440.782 (0 0 0)72,6 ← (0 0 0)63,3 1440.78168(1) 1440.781 67(2)144  
   1440.781 70(5)10  
   1440.781 5(1)143  
   1440.781(1)169  
1541.967 (0 0 0)63,3 ← (0 0 0)54,2 1541.96702(1) 1541.966 98(5)10  
   1541.967 01(8)145  
   1541.966 8(2)143  
1602.219 (0 0 0)41,3 ← (0 0 0)40,4 1602.219237(8) 1602.219 18(7)143  
   1602.219 2(1)144  
   1602.219 4(1)145  
1661.008 (0 0 0)22,1 ← (0 0 0)21,2 1661.007734(4) 1661.007 73(5)10  
   1661.007 6(1)143  
1669.905 (0 0 0)21,2 ← (0 0 0)10,1 1669.904805(3) 1669.904 81(5)10  
   1669.904 78(7)143  
1713.883 (0 0 0)43,2 ← (0 0 0)50,5 1713.88300(1) 1713.883 00(5)10  
   1713.882 97(7)143  
1716.770 (0 0 0)30,3 ← (0 0 0)21,2 1716.769691(4) 1716.769 69(5)10  
   1716.769 63(7)143  
1716.957 (0 0 0)53,3 ← (0 0 0)60,6 1716.956811(3) 1716.956 79(5)10  
1762.043 (0 0 0)63,3 ← (0 0 0)62,4 1762.042824(7) 1762.042 81(5)10  
   1762.042 79(7)143  
   1762.042 5(5)169  
1794.789 (0 0 0)62,4 ← (0 0 0)61,5 1794.788968(7) 1794.788 92(5)10  
   1794.788 95(7)143  
1867.749 (0 0 0)53,2 ← (0 0 0)52,3 1867.748645(6) 1867.748 66(5)10  
   1867.748 59(7)143  
   1867.748 4(5)169  
1880.753 (0 0 0)63,4 ← (0 0 0)70,7 1880.75256(1) 1880.752 60(5)144  
1893.687 (0 0 0)33,1 ← (0 0 0)40,4 1893.686482(8) 1893.686 51(5)144  
1918.485 (0 0 0)52,3 ← (0 0 0)43,2 1918.485335(9) 1918.485 33(5)10  
   1918.485 35(5)144  
   1918.485 32(7)143  
1919.360 (0 0 0)32,2 ← (0 0 0)31,3 1919.359452(6) 1919.359 45(5)10  
   1919.359 53(7)143  
2014.865 (0 0 0)54,2 ← (0 0 0)61,5 2014.864772(9) 2014.864 86(9)10  
2040.477 (0 0 0)43,1 ← (0 0 0)42,2 2040.476843(8) 2040.476 81(7)143  
   2040.477 4(5)169  
2074.432 (0 0 0)41,3 ← (0 0 0)32,2 2074.432386(9) 2074.432 31(8)143  
2164.132 (0 0 0)31,3 ← (0 0 0)20,2 2164.131933(6) 2164.131 98(7)143  
2196.346 (0 0 0)33,0 ← (0 0 0)32,1 2196.34580(1) 2196.345 76(7)143  
2221.751 (0 0 0)51,4 ← (0 0 0)50,5 2221.75030(1) 2221.750 5(2)143  
   2221.749 6(6)169  
2264.150 (0 0 0)42,3 ← (0 0 0)41,4 2264.14952(1) 2264.149 7(1)143  
   2264.149 9(5)169  
2344.290 (0 0 0)72,5 ← (0 0 0)71,6 2344.250438(9) 2344.250 3(1)143  
2365.900 (0 0 0)33,1 ← (0 0 0)32,2 2365.899631(9) 2365.899 66(7)143  
2391.573 (0 0 0)40,4 ← (0 0 0)31,3 2391.572601(3) 2391.572 63(7)143  
2462.933 (0 0 0)43,2 ← (0 0 0)42,3 2462.933059(7) 2462.933 03(7)143  
2630.960 (0 0 0)53,3 ← (0 0 0)52,4 2630.959501(7) 2630.959 52(7)143  
   2630.959 6(1)70  
2640.474 (0 0 0)41,4 ← (0 0 0)30,3 2640.473829(6) 2640.473 84(7)143  
   2640.473 8(1)70  
2657.666 (0 0 0)44,1 ← (0 0 0)51,4 2657.665723(8) 2657.665 79(7)139  
   2657.665 8(1)70  
2664.561 (0 0 0)74,3 ← (0 0 0)73,4 2664.57068(1) 2664.570 70(7)143  
   2664.570 8(1)70  
2685.639 (0 0 0)52,4 ← (0 0 0)51,5 2685.638988(8) 2685.638 97(7)143  
   2685.639 0(1)70  
2773.977 (0 0 0)22,1 ← (0 0 0)11,0 2773.976551(2) 2773.976 59(7)143  
2880.025 (0 0 0)63,4 ← (0 0 0)62,5 2880.02539(1) 2880.025 37(7)143  
   2880.025 2(5)169  
2884.279 (0 0 0)61,5 ← (0 0 0)60,6 2884.278944(6) 2884.278 94(7)143  
2884.941 (0 0 0)64,2 ← (0 0 0)63,3 2884.94105(1) 2884.941 05(7)143  
2962.111 (0 0 0)62,4 ← (0 0 0)53,3 2962.111101(4) 2962.111 09(7)143  
2968.749 (0 0 0)22,0 ← (0 0 0)11,1 2968.748638(6) 2968.748 65(7)143  
2970.800 (0 0 0)51,4 ← (0 0 0)42,3 2970.800360(7) 2970.800 2(1)143  
f(NASEM) (GHz)(v1v2v3)JKa,Kc(v1v2v3)JKaKcf(xMARVEL) (GHz)f(expt.) (GHz)
22.235 (0 0 0)61,6 ← (0 0 0)52,3 22.235 079 85(5) 22.235 079 85(5)126  
183.310 (0 0 0)31,3 ← (0 0 0)22,0 183.310 087(1) 183.310 087(1)129  
   183.310 091(3)128  
   183.310 08(1)65  
   183.310 07(1)132  
   183.310 15(6)133  
   183.310 1(1)148  
325.153 (0 0 0)51,5 ← (0 0 0)42,2 325.152 901(3) 325.152 902(1)144  
   325.152 899(1)129  
   325.152 90(1)144  
   325.152 89(1)130  
   325.152 9(1)148  
380.197 (0 0 0)41,4 ← (0 0 0)32,1 380.197 359 8(1) 380.197 359 8(1)127  
   380.197 356(5)129  
   380.197 365(5)130  
   380.197 353(7)131  
439.151 (0 0 0)64,3 ← (0 0 0)55,0 439.150 794 8(3) 439.150 794 8(3)127  
   439.150 795(5)129  
   439.150 81(1)131  
448.001 (0 0 0)42,3 ← (0 0 0)33,0 448.001 077 5(5) 448.001 077 5(5)127  
   448.001 09(1)131  
474.689 (0 0 0)53,3 ← (0 0 0)44,0 474.689 108(1) 474.689 108(1)129  
   474.689 09(1)131  
556.936 (0 0 0)11,0 ← (0 0 0)10,1 556.935 987 7(3) 556.935 987 7(3)127  
   556.935 985(2)56  
   556.936 00(1)129  
620.700 (0 0 0)53,2 ← (0 0 0)44,1 620.700 954 9(6) 620.700 954 9(6)127  
   620.700 97(2)144  
752.033 (0 0 0)21,1 ← (0 0 0)20,2 752.03312(1) 752.033 11(1)72  
   752.033 10(7)143  
   752.033 1(1)144  
   752.033 2(1)148  
   752.033 3(2)153  
916.172 (0 0 0)42,2 ← (0 0 0)33,1 916.171447(9) 916.171 41(7)143  
   916.171 6(1)135  
   916.171 6(1)136  
970.315 (0 0 0)52,4 ← (0 0 0)43,1 970.315045(9) 970.315 02(2)135  
   970.315 02(2)136  
   970.315 05(3)144  
   970.314 97(7)143  
987.927 (0 0 0)20,2 ← (0 0 0)11,1 987.926792(8) 987.926 76(2)136  
   987.926 76(3)135  
   987.926 76(3)144  
   987.926 74(7)143  
   987.927 4(5)169  
1097.365 (0 0 0)31,2 ← (0 0 0)30,3 1097.364862(6) 1097.364 79(7)143  
   1097.364 79(8)145  
   1097.364 9(1)144  
1113.343 (0 0 0)11,1 ← (0 0 0)00,0 1113.343014(7) 1113.343 01(5)144  
   1113.342 96(7)143  
1153.127 (0 0 0)31,2 ← (0 0 0)22,1 1153.126820(6) 1153.126 82(7)143  
   1153.126 82(8)145  
1158.324 (0 0 0)63,4 ← (0 0 0)54,1 1158.32384(1) 1158.323 85(3)144  
   1158.323 84(5)144  
   1158.323 7(1)143  
1162.912 (0 0 0)32,1 ← (0 0 0)31,2 1162.911606(8) 1162.911 61(2)144  
   1162.911 59(7)143  
   1162.911 60(8)145  
1207.639 (0 0 0)42,2 ← (0 0 0)41,3 1207.638693(9) 1207.638 71(7)143  
   1207.638 73(7)144  
1228.789 (0 0 0)22,0 ← (0 0 0)21,1 1228.788725(7) 1228.788 77(7)143  
   1228.788 72(7)144  
1322.065 (0 0 0)62,5 ← (0 0 0)53,2 1322.06474(1) 1322.064 74(5)10  
   1322.064 80(7)143  
1410.618 (0 0 0)52,3 ← (0 0 0)51,4 1410.618033(9) 1410.618 07(7)143  
   1410.618 07(8)145  
   1410.618 2(5)169  
1440.782 (0 0 0)72,6 ← (0 0 0)63,3 1440.78168(1) 1440.781 67(2)144  
   1440.781 70(5)10  
   1440.781 5(1)143  
   1440.781(1)169  
1541.967 (0 0 0)63,3 ← (0 0 0)54,2 1541.96702(1) 1541.966 98(5)10  
   1541.967 01(8)145  
   1541.966 8(2)143  
1602.219 (0 0 0)41,3 ← (0 0 0)40,4 1602.219237(8) 1602.219 18(7)143  
   1602.219 2(1)144  
   1602.219 4(1)145  
1661.008 (0 0 0)22,1 ← (0 0 0)21,2 1661.007734(4) 1661.007 73(5)10  
   1661.007 6(1)143  
1669.905 (0 0 0)21,2 ← (0 0 0)10,1 1669.904805(3) 1669.904 81(5)10  
   1669.904 78(7)143  
1713.883 (0 0 0)43,2 ← (0 0 0)50,5 1713.88300(1) 1713.883 00(5)10  
   1713.882 97(7)143  
1716.770 (0 0 0)30,3 ← (0 0 0)21,2 1716.769691(4) 1716.769 69(5)10  
   1716.769 63(7)143  
1716.957 (0 0 0)53,3 ← (0 0 0)60,6 1716.956811(3) 1716.956 79(5)10  
1762.043 (0 0 0)63,3 ← (0 0 0)62,4 1762.042824(7) 1762.042 81(5)10  
   1762.042 79(7)143  
   1762.042 5(5)169  
1794.789 (0 0 0)62,4 ← (0 0 0)61,5 1794.788968(7) 1794.788 92(5)10  
   1794.788 95(7)143  
1867.749 (0 0 0)53,2 ← (0 0 0)52,3 1867.748645(6) 1867.748 66(5)10  
   1867.748 59(7)143  
   1867.748 4(5)169  
1880.753 (0 0 0)63,4 ← (0 0 0)70,7 1880.75256(1) 1880.752 60(5)144  
1893.687 (0 0 0)33,1 ← (0 0 0)40,4 1893.686482(8) 1893.686 51(5)144  
1918.485 (0 0 0)52,3 ← (0 0 0)43,2 1918.485335(9) 1918.485 33(5)10  
   1918.485 35(5)144  
   1918.485 32(7)143  
1919.360 (0 0 0)32,2 ← (0 0 0)31,3 1919.359452(6) 1919.359 45(5)10  
   1919.359 53(7)143  
2014.865 (0 0 0)54,2 ← (0 0 0)61,5 2014.864772(9) 2014.864 86(9)10  
2040.477 (0 0 0)43,1 ← (0 0 0)42,2 2040.476843(8) 2040.476 81(7)143  
   2040.477 4(5)169  
2074.432 (0 0 0)41,3 ← (0 0 0)32,2 2074.432386(9) 2074.432 31(8)143  
2164.132 (0 0 0)31,3 ← (0 0 0)20,2 2164.131933(6) 2164.131 98(7)143  
2196.346 (0 0 0)33,0 ← (0 0 0)32,1 2196.34580(1) 2196.345 76(7)143  
2221.751 (0 0 0)51,4 ← (0 0 0)50,5 2221.75030(1) 2221.750 5(2)143  
   2221.749 6(6)169  
2264.150 (0 0 0)42,3 ← (0 0 0)41,4 2264.14952(1) 2264.149 7(1)143  
   2264.149 9(5)169  
2344.290 (0 0 0)72,5 ← (0 0 0)71,6 2344.250438(9) 2344.250 3(1)143  
2365.900 (0 0 0)33,1 ← (0 0 0)32,2 2365.899631(9) 2365.899 66(7)143  
2391.573 (0 0 0)40,4 ← (0 0 0)31,3 2391.572601(3) 2391.572 63(7)143  
2462.933 (0 0 0)43,2 ← (0 0 0)42,3 2462.933059(7) 2462.933 03(7)143  
2630.960 (0 0 0)53,3 ← (0 0 0)52,4 2630.959501(7) 2630.959 52(7)143  
   2630.959 6(1)70  
2640.474 (0 0 0)41,4 ← (0 0 0)30,3 2640.473829(6) 2640.473 84(7)143  
   2640.473 8(1)70  
2657.666 (0 0 0)44,1 ← (0 0 0)51,4 2657.665723(8) 2657.665 79(7)139  
   2657.665 8(1)70  
2664.561 (0 0 0)74,3 ← (0 0 0)73,4 2664.57068(1) 2664.570 70(7)143  
   2664.570 8(1)70  
2685.639 (0 0 0)52,4 ← (0 0 0)51,5 2685.638988(8) 2685.638 97(7)143  
   2685.639 0(1)70  
2773.977 (0 0 0)22,1 ← (0 0 0)11,0 2773.976551(2) 2773.976 59(7)143  
2880.025 (0 0 0)63,4 ← (0 0 0)62,5 2880.02539(1) 2880.025 37(7)143  
   2880.025 2(5)169  
2884.279 (0 0 0)61,5 ← (0 0 0)60,6 2884.278944(6) 2884.278 94(7)143  
2884.941 (0 0 0)64,2 ← (0 0 0)63,3 2884.94105(1) 2884.941 05(7)143  
2962.111 (0 0 0)62,4 ← (0 0 0)53,3 2962.111101(4) 2962.111 09(7)143  
2968.749 (0 0 0)22,0 ← (0 0 0)11,1 2968.748638(6) 2968.748 65(7)143  
2970.800 (0 0 0)51,4 ← (0 0 0)42,3 2970.800360(7) 2970.800 2(1)143  
a

f(NASEM), f(xMARVEL), and f(expt.) denote the estimated, the xMARVEL-predicted, and the experimental frequency of the (v1v2v3)JKa,Kc(v1v2v3)JKaKc line, respectively (the latter two values with the uncertainties of their last few digits). A factor of 100, compared to the uncertainties of the xMARVEL-predicted frequencies, is used as a cutoff for reporting W2020 entries in this table. The f(expt.) values of multiple measurements follow the order of their increased uncertainties. Where the xMARVEL predictions have smaller uncertainties than the most accurate literature observations, the corresponding values are highlighted in boldface. All transitions belong to the ground vibrational state.

Recent studies reporting highly accurate data for H216O are 20ToFuSiCs,44 18KaStCaDa,29 and 18ChHuTaSu26 with uncertainties of about 2 × 10−7, 4 × 10−7, and 8 × 10−7 cm−1, respectively. While 18KaStCaDa29 and 18ChHuTaSu26 recorded only a few ultraprecise lines, 20ToFuSiCs44 published 156 extremely accurate transitions in the near infrared, leading (by design) to benchmark energy levels within the vibrational ground state and those corresponding to the P = 4 and P = 5 polyad. Consequently, the uncertainties of most of the (0 0 0) rotational levels of H216O with J ≤ 8 are lowered in W2020 by about two orders of magnitude compared to those of Part III.

As to the data in Table 3, we note that there exists a regularly updated extended catalog of frequency allocations and spectrum protection for scientific uses.230 This catalog is important for astronomical applications and includes a number of H216O lines, with the approximate rest frequencies and assignments recalled in Table 3. For all these protected H216O frequencies, several independent, highly accurate experimental determinations are available (see the last column of Table 3); all are included in the W2020 database. However, due to the efforts of Ref. 44, the protected transition frequencies can often be obtained more accurately from xMARVEL-based predictions than from direct, in fact, less precise, THz observations (see the fourth column of Table 3). Overall, the W2020 frequencies listed in the third column of Table 3 are the most accurate estimates of the rest frequencies of certain rotational lines of H216O under protection, important for a number of scientific and engineering applications.

After the latest improvements associated with the MARVEL protocol,87,106 in particular, the introduction of the extMARVEL scheme87 and the XML-based data management developed during the present study, as well as after learning about the large number of new (ultra)high-precision spectroscopic studies on H216O, we started a project aimed at the revision of the H216O database published by an IUPAC TG in 2013.3 The XML-based line-by-line data treatment devised during this study helps to improve how we store, share, and transport spectroscopic data. Our XML-based input helps to (a) maintain the provenance of the data, (b) have a timestamp on the individual MARVEL entries, and (c) maintain a description of the “original” literature source and its data. It is planned that in the future, all MARVEL-based studies will utilize the considerable advantages of the XML format. To distinguish the new protocol from the old one, we use the name xMARVEL for the improved technique and code. Utilizing xMARVEL, revision and significant extension of the IUPAC Part III database3 was achieved in several steps.

First, we collected all sources published after 2013 and checked the literature for sources missed during the compilation of the IUPAC Part III database. Due to this extensive search, 78 new experimental sources were added to the Part III dataset of H216O rovibrational transitions and two sources (81Kyro110 and 05ZoShPoTe111) were permanently deleted from it. The new sources contain a large number of new and/or remeasured transitions, and they result in about 800 new empirical energy levels. In total, the new W2020 database of H216O contains 267 289 validated transitions that yield 19 204 rovibrational energy values with dependable, statistically significant uncertainties.

Second, we “optimized” the uncertainties of the observed lines. The aim of what we call optimization has been to decrease the uncertainties as much as possible within the experimental limitations, including occasional recalibration. These optimized uncertainties are used to classify the recorded transitions of a given source into segments, as required by the extMARVEL protocol. Note that extMARVEL was designed to retain the accuracy of the most precise experiments during the MARVEL analysis and transfer that to the energy values. This means that a large number of the empirical energy levels of this study have uncertainties characteristic of the high-precision measurements considered during the construction of the W2020 database. This also implies that some of these transitions surpass the accuracy of those maintained by the National Academies of Sciences, Engineering, and Medicine230 and the International Astronomical Union, updating our previous related compilation.87 

Third, we attempted to create the best set of self-consistent labels for the rovibrational energy levels. Occasionally, this meant modifications of some of the published labels. While recognizing that only the J quantum number and the parity of the state are unique descriptors, it is still felt that most of the labels of this study provide at least an approximate picture about the relevant rovibrational motions characterizing the quantum states of H216O.

One must comment on the fact that, although the W2020 database contains significantly more entries than the IUPAC database, the number of energy levels these transitions determine is about the same in the two databases. This observation is in itself an important warning that high-resolution experiments should be designed much more efficiently if the goal is to extend our knowledge about the rovibrational states of H216O. The number of empirical energy levels is still less than 20 000, which should be compared to the about one million bound rovibrational states of H216O indicated by the best first-principles computations.31,93

Construction of the W2020 database of the rovibrational transitions of H216O involved their in-depth validation. During this process, we compared the W2020 energies, obtained via the xMARVEL protocol, with first-principles (PoKaZaTeL31 and BT2109) energy lists in order to check whether all the W2020 states can be matched with their theoretical counterparts within appropriate symmetry and J values. As a result of this comparison and due to some missing links, 229 energy levels had to be removed from the PCs. We also compared the W2020 energies with the previously published rovibrational datasets of H216O (01LaCoCa,227 04CoPiVeLa,179 14CoMaPi,11 and JPL228), augmented with a thorough matching of the W2020 and Part III datasets. These tests show that the W2020 dataset not only better represents the original literature sources, but its empirical energy levels are more accurate and reliable than their Part III counterparts.

Finally, note that the much improved accuracy of the J ≤ 8 rotational lines present in W2020, resulting mostly from the precision-spectroscopy measurements of Ref. 44, means that the upper energy levels deduced in several sources8,26,173,231 reporting highly accurate transitions would change significantly. This secondary effect of the W2020 dataset must be taken into account in future studies.

See the supplementary material for listings of transitions and energy levels characterizing the W2020 dataset.

The data that support the findings of this study are available within the article (and its supplementary material) and on the ReSpecTh website (http://ReSpecTh.hu).

The work performed in Budapest received support from the NKFIH (Grant No. K119658), from the ELTE Excellence Program (Grant No. 1783-3/2018/FEKUTSTRAT) supported by the Hungarian Ministry of Human Capacities (EMMI), and from Grant No. VEKOP-2.3.2-16-2017-000. The work performed in the United Kingdom received support from the UK Natural Environment Research Council through grant NE/T000767/1. The joint work between the Budapest and London groups received support from the COST Action MOLIM (Molecules in Motion, CM1405) in the form of a Short Term Scientific Mission (STSM) awarded to A.G.C. Dr. Semen Mikhailenko is thanked for fruitful discussions.

1.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
M. R.
Carleer
,
A. G.
Császár
,
R. R.
Gamache
,
J. T.
Hodges
,
A.
Jenouvrier
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
R. A.
Toth
,
A. C.
Vandaele
,
N. F.
Zobov
,
L.
Daumont
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
S. N.
Mikhailenko
, and
S. V.
Shirin
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
573
(
2009
).
2.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
A. G.
Császár
,
L.
Daumont
,
R. R.
Gamache
,
J. T.
Hodges
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
R. A.
Toth
,
A. C.
Vandaele
,
N. F.
Zobov
,
S.
Fally
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
S.-M.
Hu
,
S. N.
Mikhailenko
, and
B. A.
Voronin
,
J. Quant. Spectrosc. Radiat. Transfer
111
,
2160
(
2010
).
3.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
M. R.
Carleer
,
A. G.
Császár
,
L.
Daumont
,
R. R.
Gamache
,
J. T.
Hodges
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
A. C.
Vandaele
,
N. F.
Zobov
,
A. R.
Al Derzi
,
C.
Fábri
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
L.
Lodi
, and
I. I.
Mizus
,
J. Quant. Spectrosc. Radiat. Transfer
117
,
29
(
2013
).
4.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
A. G.
Császár
,
L.
Daumont
,
R. R.
Gamache
,
J. T.
Hodges
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
A. C.
Vandaele
,
N. F.
Zobov
,
N.
Dénes
,
A. Z.
Fazliev
,
T.
Furtenbacher
,
I. E.
Gordon
,
S.-M.
Hu
,
T.
Szidarovszky
, and
I. A.
Vasilenko
,
J. Quant. Spectrosc. Radiat. Transfer
142
,
93
(
2014
).
5.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
A. G.
Császár
,
L.
Daumont
,
R. R.
Gamache
,
J. T.
Hodges
,
O. V.
Naumenko
,
O. L.
Polyansky
,
L. S.
Rothman
,
A. C.
Vandaele
, and
N. F.
Zobov
,
Pure Appl. Chem.
86
,
71
(
2014
).
6.
G.
Cazzoli
and
C.
Puzzarini
,
J. Phys. Chem. A
117
,
13759
(
2013
).
7.
O.
Leshchishina
,
S. N.
Mikhailenko
,
D.
Mondelain
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
130
,
69
(
2013
).
8.
Y.
Lu
,
X.-F.
Li
,
J.
Wang
,
A.-W.
Liu
, and
S.-M.
Hu
,
J. Quant. Spectrosc. Radiat. Transfer
118
,
96
(
2013
).
9.
S. N.
Mikhailenko
,
V. I.
Serdyukov
,
L. N.
Sinitsa
, and
S. S.
Vasilchenko
,
Opt. Spectrosc.
115
,
912
(
2013
).
10.
S.
Yu
,
J. C.
Pearson
, and
B. J.
Drouin
,
J. Mol. Spectrosc.
288
,
7
(
2013
).
11.
L. H.
Coudert
,
M.-A.
Martin-Drumel
, and
O.
Pirali
,
J. Mol. Spectrosc.
303
,
36
(
2014
).
12.
A.-W.
Liu
,
O. V.
Naumenko
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
138
,
97
(
2014
).
13.
K. Y.
Osipov
,
V. A.
Kapitanov
,
A. E.
Protasevich
,
A. A.
Pereslavtseva
, and
Y. Y.
Ponurovsky
,
J. Quant. Spectrosc. Radiat. Transfer
142
,
1
(
2014
).
14.
L.
Regalia
,
C.
Oudot
,
S.
Mikhailenko
,
L.
Wang
,
X.
Thomas
,
A.
Jenouvrier
, and
P.
Von der Heyden
,
J. Quant. Spectrosc. Radiat. Transfer
136
,
119
(
2014
).
15.
L. N.
Sinitsa
,
V. I.
Serduykov
,
S. S.
Vasilchenko
,
A. D.
Bykov
,
A. P.
Shcherbakov
,
E. R.
Polovtseva
, and
K. V.
Kalinin
, in
20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics
, edited by
O. A.
Romanovskii
(
SPIE
,
Bellingham, WA
,
2014
) article 92920J.
16.
A.
Campargue
,
S. N.
Mikhailenko
,
B. G.
Lohan
,
E. V.
Karlovets
,
D.
Mondelain
, and
S.
Kassi
,
J. Quant. Spectrosc. Radiat. Transfer
157
,
135
(
2015
).
17.
D. S.
Makarov
,
M. A.
Koshelev
,
N. F.
Zobov
, and
O. V.
Boyarkin
,
Chem. Phys. Lett.
627
,
73
(
2015
).
18.
G. C.
Mellau
,
S. N.
Mikhailenko
, and
V. G.
Tyuterev
,
J. Mol. Spectrosc.
308-309
,
6
(
2015
).
19.
S. N.
Mikhailenko
,
V. I.
Serdyukov
, and
L. N.
Sinitsa
,
J. Quant. Spectrosc. Radiat. Transfer
156
,
36
(
2015
).
20.
V. T.
Sironneau
and
J. T.
Hodges
,
J. Quant. Spectrosc. Radiat. Transfer
152
,
1
(
2015
).
21.
L. N.
Sinitsa
,
V. I.
Serdyukov
,
S. S.
Vasil’chenko
,
A. D.
Bykov
,
A. P.
Shcherbakov
,
E. R.
Polovtseva
, and
K. V.
Kalinin
,
Opt. Spectrosc.
118
,
697
(
2015
).
22.
S. N.
Mikhailenko
,
O.
Leshchishina
,
E. V.
Karlovets
,
D.
Mondelain
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
177
,
108
(
2016
).
23.
M.
Birk
,
G.
Wagner
,
J.
Loos
,
L.
Lodi
,
O. L.
Polyansky
,
A. A.
Kyuberis
,
N. F.
Zobov
, and
J.
Tennyson
,
J. Quant. Spectrosc. Radiat. Transfer
203
,
88
(
2017
).
24.
J.
Loos
,
M.
Birk
, and
G.
Wagner
,
J. Quant. Spectrosc. Radiat. Transfer.
203
,
119
(
2017
).
25.
D.
Mondelain
,
S. N.
Mikhailenko
,
E. V.
Karlovets
,
S.
Béguier
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
203
,
206
(
2017
).
26.
J.
Chen
,
T.-P.
Hua
,
L.-G.
Tao
,
Y. R.
Sun
,
A.-W.
Liu
, and
S.-M.
Hu
,
J. Quant. Spectrosc. Radiat. Transfer
205
,
91
(
2018
).
27.
E.
Czinki
,
T.
Furtenbacher
,
A. G.
Császár
,
A. K.
Eckhardt
, and
G. C.
Mellau
,
J. Quant. Spectrosc. Radiat. Transfer
206
,
46
(
2018
).
28.
V. M.
Devi
,
R. R.
Gamache
,
B.
Vispoel
,
C. L.
Renaud
,
D. C.
Benner
,
M. A. H.
Smith
,
T. A.
Blake
, and
R. L.
Sams
,
J. Mol. Spectrosc.
348
,
13
(
2018
).
29.
S.
Kassi
,
T.
Stoltmann
,
M.
Casado
,
M.
Daëron
, and
A.
Campargue
,
J. Chem. Phys.
148
,
054201
(
2018
).
30.
S. N.
Mikhailenko
,
V. I.
Serdyukov
, and
L. N.
Sinitsa
,
J. Quant. Spectrosc. Radiat. Transfer
217
,
170
(
2018
).
31.
O. L.
Polyansky
,
A. A.
Kyuberis
,
N. F.
Zobov
,
J.
Tennyson
,
S. N.
Yurchenko
, and
L.
Lodi
,
Mon. Not. R. Astron. Soc.
480
,
2597
(
2018
).
32.
L.
Rutkowski
,
A.
Foltynowicz
,
F. M.
Schmidt
,
A. C.
Johansson
,
A.
Khodabakhsh
,
A. A.
Kyuberis
,
N. F.
Zobov
,
O. L.
Polyansky
,
S. N.
Yurchenko
, and
J.
Tennyson
,
J. Quant. Spectrosc. Radiat. Transfer
205
,
213
(
2018
).
33.
P. J.
Schroeder
,
M. J.
Cich
,
J.
Yang
,
F. R.
Giorgetta
,
W. C.
Swann
,
I.
Coddington
,
N. R.
Newbury
,
B. J.
Drouin
, and
G. B.
Rieker
,
J. Quant. Spectrosc. Radiat. Transfer
210
,
240
(
2018
).
34.
L. N.
Sinitsa
,
V. I.
Serdyukov
,
E. R.
Polovtseva
,
A. D.
Bykov
, and
A. P.
Shcherbakov
,
Atmos. Oceanic Opt.
31
,
329
(
2018
).
35.
V. I.
Serdyukov
,
L. N.
Sinitsa
,
S. S.
Vasilchenko
,
N. N.
Lavrentieva
,
A. S.
Dudaryonok
, and
A. P.
Scherbakov
,
J. Quant. Spectrosc. Radiat. Transfer
219
,
213
(
2018
).
36.
Y.
Tan
,
S. N.
Mikhailenko
,
J.
Wang
,
A.-W.
Liu
,
X.-Q.
Zhao
,
G.-L.
Liu
, and
S.-M.
Hu
,
J. Quant. Spectrosc. Radiat. Transfer
221
,
233
(
2018
).
37.
A.-W.
Liu
,
G.-L.
Liu
,
X.-Q.
Zhao
,
J.
Wang
,
Y.
Tan
, and
S.-M.
Hu
,
J. Quant. Spectrosc. Radiat. Transfer
239
,
106651
(
2019
).
38.
S. N.
Mikhailenko
,
E. V.
Karlovets
,
S.
Vasilchenko
,
D.
Mondelain
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
236
,
106574
(
2019
).
39.
S. N.
Mikhailenko
,
D.
Mondelain
,
E. V.
Karlovets
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
222-223
,
229
(
2019
).
40.
L.
Régalia
,
X.
Thomas
,
T.
Rennesson
, and
S.
Mikhailenko
,
J. Quant. Spectrosc. Radiat. Transfer
235
,
257
(
2019
).
41.
V. I.
Serdyukov
,
L. N.
Sinitsa
,
N. N.
Lavrentieva
, and
A. S.
Dudaryonok
,
J. Quant. Spectrosc. Radiat. Transfer
234
,
47
(
2019
).
42.
S.
Vasilchenko
,
H.
Tran
,
D.
Mondelain
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
235
,
332
(
2019
).
43.
A.
Campargue
,
S.
Kassi
,
A.
Yachmenev
,
A. A.
Kyuberis
,
J.
Küpper
, and
S. N.
Yurchenko
,
Phys. Rev. Res.
2
,
023091
(
2020
).
44.
R.
Tóbiás
,
T.
Furtenbacher
,
I.
Simkó
,
A. G.
Császár
,
M. L.
Diouf
,
F. M. J.
Cozijn
,
J. M. A.
Staa
,
E. J.
Salumbides
, and
W.
Ubachs
,
Nat. Commun.
11
,
1708
(
2020
).
45.
R. T.
Hall
and
J. M.
Dowling
,
J. Chem. Phys.
47
,
2454
(
1967
).
46.
W. S.
Benedict
,
M. A.
Pollack
, and
W. J.
Tomlinson
 III
,
IEEE J. Quantum. Electron.
5
,
108
(
1969
).
47.
P. E.
Fraley
and
K.
Narahari Rao
,
J. Mol. Spectrosc.
29
,
348
(
1969
).
48.
K. M.
Evenson
,
J. S.
Wells
,
L. M.
Matarrese
, and
L. B.
Elwell
,
Appl. Phys. Lett.
16
,
159
(
1970
).
49.
D. A.
Stephenson
and
R. G.
Strauch
,
J. Mol. Spectrosc.
35
,
494
(
1970
).
50.
J.-M.
Flaud
,
C.
Camy-Peyret
, and
J. P.
Maillard
,
Mol. Phys.
32
,
499
(
1976
).
51.
J. W.
Fleming
and
M. J.
Gibson
,
J. Mol. Spectrosc.
62
,
326
(
1976
).
52.
T. D.
Wilkerson
,
G.
Schwemmer
,
B.
Gentry
, and
L. P.
Giver
,
J. Quant. Spectrosc. Radiat. Transfer
22
,
315
(
1979
).
53.
J.
Kauppinen
and
E.
Kyrö
,
J. Mol. Spectrosc.
84
,
405
(
1980
).
54.
R. A.
Toth
and
J. W.
Brault
,
Appl. Opt.
22
,
908
(
1983
).
55.
J.-Y.
Mandin
,
J.-P.
Chevillard
,
C.
Camy-Peyret
, and
J.-M.
Flaud
,
J. Mol. Spectrosc.
116
,
167
(
1986
).
56.
V. N.
Markov
and
A. F.
Krupnov
,
J. Mol. Spectrosc.
172
,
211
(
1995
).
57.
L. R.
Brown
and
C.
Plymate
,
J. Quant. Spectrosc. Radiat. Transfer
56
,
263
(
1996
).
58.
A.
Bauer
,
M.
Godon
,
J.
Carlier
, and
R. R.
Gamache
,
J. Quant. Spectrosc. Radiat. Transfer
59
,
273
(
1998
).
59.
Seventh International Symposium on Atmospheric and Ocean Optics
, edited by
G. G.
Matvienko
and
M. V.
Panchenko
(
SPIE
,
Tomsk, Russian federation
,
2000
), Vol. 4341.
60.
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
,
S. V.
Shirin
,
R.
Nassar
,
T.
Hirao
,
T.
Imajo
,
P. F.
Bernath
, and
L.
Wallace
,
Astrophys. J.
530
,
994
(
2000
).
61.
R.
Schermaul
,
R. C. M.
Learner
,
A. A. D.
Canas
,
J. W.
Brault
,
O. L.
Polyansky
,
D.
Belmiloud
,
N. F.
Zobov
, and
J.
Tennyson
,
J. Mol. Spectrosc.
211
,
169
(
2002
).
62.
R. N.
Tolchenov
,
J.
Tennyson
,
S. V.
Shirin
,
N. F.
Zobov
,
O. L.
Polyansky
, and
A. N.
Maurellis
,
J. Mol. Spectrosc.
221
,
99
(
2003
).
63.
Q.
Zou
and
P.
Varanasi
,
J. Quant. Spectrosc. Radiat. Transfer
82
,
45
(
2003
).
64.
S. V.
Shirin
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
,
T.
Parekunnel
, and
P. F.
Bernath
,
J. Chem. Phys.
120
,
206
(
2004
).
65.
G. Y.
Golubiatnikov
,
J. Mol. Spectrosc.
230
,
196
(
2005
).
66.
I. V.
Ptashnik
,
K. M.
Smith
, and
K. P.
Shine
,
J. Mol. Spectrosc.
232
,
186
(
2005
).
67.
N. F.
Zobov
,
R. I.
Ovsannikov
,
S. V.
Shirin
,
O. L.
Polyansky
,
J.
Tennyson
,
A.
Janka
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
240
,
112
(
2006
).
68.
F.
Mazzotti
,
R. N.
Tolchenov
, and
A.
Campargue
,
J. Mol. Spectrosc.
243
,
78
(
2007
).
69.
M. D.
De Vizia
,
F.
Rohart
,
A.
Castrillo
,
E.
Fasci
,
L.
Moretti
, and
L.
Gianfrani
,
Phys. Rev. A
83
,
052506
(
2011
).
70.
B. J.
Drouin
,
S.
Yu
,
J. C.
Pearson
, and
H.
Gupta
,
J. Mol. Struct.
1006
,
2
(
2011
).
71.
G.
Galzerano
,
A.
Gambetta
,
E.
Fasci
,
A.
Castrillo
,
M.
Marangoni
,
P.
Laporta
, and
L.
Gianfrani
,
Appl. Phys. B
102
,
725
(
2011
).
72.
M. A.
Koshelev
,
J. Quant. Spectrosc. Radiat. Transfer
112
,
550
(
2011
).
73.
O. M.
Leshchishina
,
O. V.
Naumenko
, and
A.
Campargue
,
J. Mol. Spectrosc.
268
,
28
(
2011
).
74.
O. M.
Leshchishina
,
O. V.
Naumenko
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
112
,
913
(
2011
).
75.
A.-W.
Liu
,
K.-F.
Song
,
H.-Y.
Ni
,
S.-M.
Hu
,
O. V.
Naumenko
,
I. A.
Vasilenko
, and
S. N.
Mikhailenko
,
J. Mol. Spectrosc.
265
,
26
(
2011
).
76.
S.
Mikhailenko
,
S.
Kassi
,
L.
Wang
, and
A.
Campargue
,
J. Mol. Spectrosc.
269
,
92
(
2011
).
77.
L.
Daumont
,
A.
Jenouvrier
,
S.
Mikhailenko
,
M.
Carleer
,
C.
Hermans
,
S.
Fally
, and
A. C.
Vandaele
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
878
(
2012
).
78.
M. J.
Down
,
J.
Tennyson
,
J.
Orphal
,
P.
Chelin
, and
A. A.
Ruth
,
J. Mol. Spectrosc.
282
,
1
(
2012
).
79.
O.
Leshchishina
,
S.
Mikhailenko
,
D.
Mondelain
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
2155
(
2012
).
80.
S. N.
Mikhailenko
,
O. V.
Naumenko
,
A. V.
Nikitin
,
I. A.
Vasilenko
,
A.-W.
Liu
,
K.-F.
Song
,
H.-Y.
Ni
, and
S.-M.
Hu
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
653
(
2012
).
81.
C.
Oudot
,
L.
Régalia
,
S.
Mikhailenko
,
X.
Thomas
,
P.
Von Der Heyden
, and
D.
Décatoire
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
859
(
2012
).
82.
C.
Puzzarini
,
G.
Cazzoli
, and
J.
Gauss
,
J. Chem. Phys.
137
,
154311
(
2012
).
83.
S. S.
Vasilchenko
,
S. N.
Mikhailenko
,
V. I.
Serdyukov
, and
L. N.
Sinitsa
,
Opt. Spectrosc.
113
,
451
455
(
2012
).
84.
J.
Tennyson
,
N. F.
Zobov
,
R.
Williamson
,
O. L.
Polyansky
, and
P. F.
Bernath
,
J. Phys. Chem. Ref. Data
30
,
735
(
2001
).
85.
T.
Furtenbacher
,
A. G.
Császár
, and
J.
Tennyson
,
J. Mol. Spectrosc.
245
,
115
(
2007
).
86.
T.
Furtenbacher
and
A. G.
Császár
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
929
(
2012
).
87.
R.
Tóbiás
,
T.
Furtenbacher
,
J.
Tennyson
, and
A. G.
Császár
,
Phys. Chem. Chem. Phys.
21
,
3473
(
2019
).
88.
I. E.
Gordon
,
L. S.
Rothman
,
C.
Hill
,
R. V.
Kochanov
,
Y.
Tan
,
P. F.
Bernath
,
M.
Birk
,
V.
Boudon
,
A.
Campargue
,
K. V.
Chance
,
B. J.
Drouin
,
J.-M.
Flaud
,
R. R.
Gamache
,
J. T.
Hodges
,
D.
Jacquemart
,
V. I.
Perevalov
,
A.
Perrin
,
K. P.
Shine
,
M.-A. H.
Smith
,
J.
Tennyson
,
G. C.
Toon
,
H.
Tran
,
V. G.
Tyuterev
,
A.
Barbe
,
A. G.
Császár
,
V. M.
Devi
,
T.
Furtenbacher
,
J. J.
Harrison
,
J.-M.
Hartmann
,
A.
Jolly
,
T. J.
Johnson
,
T.
Karman
,
I.
Kleiner
,
A. A.
Kyuberis
,
J.
Loos
,
O. M.
Lyulin
,
S. T.
Massie
,
S. N.
Mikhailenko
,
N.
Moazzen-Ahmadi
,
H. S. P.
Müller
,
O. V.
Naumenko
,
A. V.
Nikitin
,
O. L.
Polyansky
,
M.
Rey
,
M.
Rotger
,
S. W.
Sharpe
,
K.
Sung
,
E.
Starikova
,
S. A.
Tashkun
,
J. V.
Auwera
,
G.
Wagner
,
J.
Wilzewski
,
P.
Wcisło
,
S.
Yu
, and
E. J.
Zak
,
J. Quant. Spectrosc. Radiat. Transfer
203
,
3
(
2017
).
89.
N. N.
Lavrentieva
,
B. A.
Voronin
,
O. V.
Naumenko
,
A. D.
Bykov
, and
A. A.
Fedorova
,
Icarus
236
,
38
(
2014
).
90.
A. A.
Kyuberis
,
N. F.
Zobov
,
O. V.
Naumenko
,
B. A.
Voronin
,
O. L.
Polyansky
,
L.
Lodi
,
A.
Liu
,
S.-M.
Hu
, and
J.
Tennyson
,
J. Quant. Spectrosc. Radiat. Transfer
203
,
175
(
2017
).
91.
N.
Jacquinet-Husson
,
R.
Armante
,
N. A.
Scott
,
A.
Chédin
,
L.
Crépeau
,
C.
Boutammine
,
A.
Bouhdaoui
,
C.
Crevoisier
,
V.
Capelle
,
C.
Boonne
,
N.
Poulet-Crovisier
,
A.
Barbe
,
D.
Chris Benner
,
V.
Boudon
,
L. R.
Brown
,
J.
Buldyreva
,
A.
Campargue
,
L. H.
Coudert
,
V. M.
Devi
,
M. J.
Down
,
B. J.
Drouin
,
A.
Fayt
,
C.
Fittschen
,
J.-M.
Flaud
,
R. R.
Gamache
,
J. J.
Harrison
,
C.
Hill
,
Ø.
Hodnebrog
,
S.-M.
Hu
,
D.
Jacquemart
,
A.
Jolly
,
E.
Jiménez
,
N. N.
Lavrentieva
,
A.-W.
Liu
,
L.
Lodi
,
O. M.
Lyulin
,
S. T.
Massie
,
S.
Mikhailenko
,
H. S. P.
Müller
,
O. V.
Naumenko
,
A.
Nikitin
,
C. J.
Nielsen
,
J.
Orphal
,
V. I.
Perevalov
,
A.
Perrin
,
E.
Polovtseva
,
A.
Predoi-Cross
,
M.
Rotger
,
A. A.
Ruth
,
S. S.
Yu
,
K.
Sung
,
S. A.
Tashkun
,
J.
Tennyson
,
V. G.
Tyuterev
,
J.
Vander Auwera
,
B. A.
Voronin
, and
A.
Makie
,
J. Mol. Spectrosc.
327
,
31
(
2016
).
92.
O. L.
Polyansky
,
A. A.
Kyuberis
,
L.
Lodi
,
J.
Tennyson
,
S. N.
Yurchenko
,
R. I.
Ovsyannikov
, and
N. F.
Zobov
,
Mon. Not. R. Astron. Soc.
466
,
1363
(
2017
).
93.
T.
Furtenbacher
,
T.
Szidarovszky
,
J.
Hrubý
,
A. A.
Kyuberis
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
, and
A. G.
Császár
,
J. Phys. Chem. Ref. Data
45
,
043104
(
2016
).
94.
I.
Simkó
,
T.
Furtenbacher
,
J.
Hrubý
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
,
R. R.
Gamache
,
T.
Szidarovszky
,
N.
Dénes
, and
A. G.
Császár
,
J. Phys. Chem. Ref. Data
46
,
023104
(
2017
).
95.
R. R.
Gamache
,
C.
Roller
,
E.
Lopes
,
I. E.
Gordon
,
L. S.
Rothman
,
O. L.
Polyansky
,
N. F.
Zobov
,
A. A.
Kyuberis
,
J.
Tennyson
,
S. N.
Yurchenko
,
A. G.
Császár
,
T.
Furtenbacher
,
X.
Huang
,
D. W.
Schwenke
,
T. J.
Lee
,
B. J.
Drouin
,
S. A.
Tashkun
,
V. I.
Perevalov
, and
R. V.
Kochanov
,
J. Quant. Spectrosc. Radiat. Transfer
203
,
70
(
2017
).
96.
S. V.
Shirin
,
O. L.
Polyansky
,
N. F.
Zobov
,
R. I.
Ovsyannikov
,
A. G.
Császár
, and
J.
Tennyson
,
J. Mol. Spectrosc.
236
,
216
(
2006
).
97.
O. L.
Polyansky
,
R. I.
Ovsyannikov
,
A. A.
Kyuberis
,
L.
Lodi
,
J.
Tennyson
, and
N. F.
Zobov
,
J. Phys. Chem. A
117
,
9633
9643
(
2013
).
98.
T.
Szidarovszky
and
A. G.
Császár
,
Mol. Phys.
111
,
2131
(
2013
).
99.
I. I.
Mizus
,
A. A.
Kyuberis
,
N. F.
Zobov
,
V. Y.
Makhnev
,
O. L.
Polyansky
, and
J.
Tennyson
,
Philos. Trans. R. Soc. A
376
,
20170149
(
2018
).
100.
M. S.
Child
,
T.
Weston
, and
J.
Tennyson
,
Mol. Phys.
96
,
371
(
1999
).
101.
A.
Miani
and
J.
Tennyson
,
J. Chem. Phys.
120
,
2732
(
2004
).
102.
T.
Furtenbacher
and
A. G.
Császár
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
1234
(
2008
).
103.
A. G.
Császár
and
T.
Furtenbacher
,
J. Mol. Spectrosc.
266
,
99
(
2011
).
104.
A. G.
Császár
,
T.
Furtenbacher
, and
P.
Árendás
,
J. Phys. Chem. A
120
,
8949
(
2016
).
105.
T.
Furtenbacher
,
P.
Árendás
,
G.
Mellau
, and
A. G.
Császár
,
Sci. Rep.
4
,
4654
(
2014
).
106.
R.
Tóbiás
,
T.
Furtenbacher
, and
A. G.
Császár
,
J. Quant. Spectrosc. Radiat. Transfer
203
,
557
(
2017
).
107.
D.
Darby-Lewis
,
H.
Shah
,
D.
Joshi
,
F.
Khan
,
M.
Kauwo
,
N.
Sethi
,
P. F.
Bernath
,
T.
Furtenbacher
,
R.
Tóbiás
,
A. G.
Császár
et al.,
J. Mol. Spectrosc.
362
,
69
(
2019
).
108.
J.
Tennyson
,
T.
Furtenbacher
,
R.
Tóbiás
, and
A. G.
Császár
, “
xMARVEL
J. Quant. Spectrosc. Radiat. Transfer
(unpublished) (
2020
).
109.
R. J.
Barber
,
J.
Tennyson
,
G. J.
Harris
, and
R. N.
Tolchenov
,
Mon. Not. R. Astron. Soc.
368
,
1087
(
2006
).
110.
111.
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
,
J.
Tennyson
,
P.-F.
Coheur
,
P. F.
Bernath
,
M.
Carleer
, and
R.
Colin
,
Chem. Phys. Lett.
414
,
193
(
2005
).
112.
F.
Matsushima
,
N.
Tomatsu
,
T.
Nagai
,
Y.
Moriwaki
, and
K.
Takagi
,
J. Mol. Spectrosc.
235
,
190
(
2006
).
113.
L. R.
Brown
and
R. A.
Toth
,
J. Opt. Soc. Am. B
2
,
842
(
1985
).
114.
R. A.
Toth
,
J. Quant. Spectrosc. Radiat. Transfer
94
,
51
(
2005
).
115.
R. A.
Toth
,
J. Mol. Spectrosc.
194
,
28
(
1999
).
116.
N. F.
Zobov
,
S. V.
Shirin
,
R. I.
Ovsyannikov
,
O. L.
Polyansky
,
R. J.
Barber
,
J.
Tennyson
,
P. F.
Bernath
,
M.
Carleer
,
R.
Colin
, and
P.-F.
Coheur
,
Mon. Not. R. Astron. Soc.
387
,
1093
(
2008
).
117.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1997
(
1955
).
118.
H. W.
Kroto
,
Molecular Rotation Spectra
(
Dover
,
New York
,
1992
).
119.
M.
Grechko
,
P.
Maksyutenko
,
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
,
T. R.
Rizzo
, and
O. V.
Boyarkin
,
J. Phys. Chem. A
112
,
10539
(
2008
).
120.
M.
Grechko
,
O. V.
Boyarkin
,
T. R.
Rizzo
,
P.
Maksyutenko
,
N. F.
Zobov
,
S. V.
Shirin
,
L.
Lodi
,
J.
Tennyson
,
A. G.
Császár
, and
O. L.
Polyansky
,
J. Chem. Phys.
131
,
221105
(
2009
).
121.
G.
Guelachvili
and
N.
Picqué
, in
Molecular Constants Mostly From Infrared Spectroscopy
, edited by
G.
Guelachvili
(
Springer
,
New York, NY
,
2016
), pp.
1
58
.
122.
O. V.
Boyarkin
(private communication,
2020
).
123.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
108
,
9751
(
1998
).
124.
G.
Tarczay
,
A. G.
Császár
,
W.
Klopper
,
V.
Szalay
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
110
,
11971
(
1999
).
125.
E. F.
Valeev
,
W. D.
Allen
,
H. F.
Schaefer
 III
, and
A. G.
Császár
,
J. Chem. Phys.
114
,
2875
(
2001
).
126.
S. G.
Kukolich
,
J. Chem. Phys.
50
,
3751
(
1969
).
127.
G.
Cazzoli
,
C.
Puzzarini
,
M. E.
Harding
, and
J.
Gauss
,
Chem. Phys. Lett.
473
,
21
(
2009
).
128.
C.
Huiszoon
,
Rev. Sci. Instrum.
42
,
477
(
1971
).
129.
G. Y.
Golubiatnikov
,
V. N.
Markov
,
A.
Guarnieri
, and
R.
Knochel
,
J. Mol. Spectrosc.
240
,
251
(
2006
).
130.
M. A.
Koshelev
,
M. Y.
Tretyakov
,
G. Y.
Golubiatnikov
,
V. V.
Parshin
,
V. N.
Markov
, and
I. A.
Koval
,
J. Mol. Spectrosc.
241
,
101
(
2007
).
131.
M. Y.
Tretyakov
,
M. A.
Koshelev
,
I. N.
Vilkov
,
V. V.
Parshin
, and
E. A.
Serov
,
J. Quant. Spectrosc. Radiat. Transfer
114
,
109
(
2013
).
132.
A.
Bauer
,
M.
Godon
,
M.
Kheddar
, and
J. M.
Hartmann
,
J. Quant. Spectrosc. Radiat. Transfer
41
,
49
(
1989
).
133.
G.
Steenbeckeliers
and
J.
Bellet
,
C. R. Acad. Sc. Paris
273
,
471
(
1971
).
134.
T. G.
Blaney
,
C. C.
Bradley
,
G. J.
Edwards
, and
D. J. E.
Knight
,
Phys. Lett. A
43
,
471
(
1973
).
135.
P.
Helminger
,
J. K.
Messer
, and
F. C.
De Lucia
,
Appl. Phys. Lett.
42
,
309
(
1983
).
136.
J. K.
Messer
,
F. C.
De Lucia
, and
P.
Helminger
,
Int. J. Infrared Millimeter Waves
4
,
505
(
1983
).
137.
H.
Kuze
,
Astrophys. J.
239
,
1131
(
1980
).
138.
S.
Golden
,
T.
Wentink
,
R.
Hillger
, and
M. W. P.
Strandberg
,
Phys. Rev.
73
,
92
(
1948
).
139.
K. V.
Chance
,
K.
Park
, and
K. M.
Evenson
,
J. Quant. Spectrosc. Radiat. Transfer
59
,
687
(
1998
).
140.
O. I.
Baskakov
,
V. A.
Alekseev
,
E. A.
Alekseev
, and
B. I.
Polevoi
,
Opt. Spectrosc.
63
,
1016
(
1987
).
141.
T.
Amano
and
F.
Scappini
,
Chem. Phys. Lett.
182
,
93
(
1991
).
142.
P. D.
Natale
,
L.
Lorini
,
M.
Inguscio
,
I. G.
Nolt
,
J. H.
Park
,
G. D.
Lonardo
,
L.
Fusina
,
P. A. R.
Ade
, and
A. G.
Murray
,
Appl. Opt.
36
,
8526
(
1997
).
143.
F.
Matsushima
,
H.
Odashima
,
T.
Iwasaki
,
S.
Tsunekawa
, and
K.
Takagi
,
J. Mol. Spectrosc.
352-353
,
371
(
1995
).
144.
S.
Yu
,
J. C.
Pearson
,
B. J.
Drouin
,
M.-A.
Martin-Drumel
,
O.
Pirali
,
M.
Vervloet
,
L. H.
Coudert
,
H. S. P.
Müller
, and
S.
Brünken
,
J. Mol. Spectrosc.
279
,
16
(
2012
).
145.
G.
Cazzoli
,
C.
Puzzarini
,
G.
Buffa
, and
O.
Tarrini
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
609
(
2009
).
146.
A. V.
Burenin
,
T. M.
Fevral’skikh
,
E. N.
Karyakin
,
O. L.
Polyansky
, and
S. M.
Shapin
,
J. Mol. Spectrosc.
100
,
182
(
1983
).
147.
J. C.
Pearson
,
T.
Anderson
,
E.
Herbst
,
F. C.
De Lucia
, and
P.
Helminger
,
Astrophys. J.
379
,
L41
(
1991
).
148.
F. C.
De Lucia
,
P.
Helminger
,
R. L.
Cook
, and
W.
Gordy
,
Phys. Rev. A
5
,
487
(
1972
).
149.
J. C.
Pearson
, Ph.D. thesis,
Duke University
,
Durham, NC
,
1995
.
150.
P.
Chen
,
J. C.
Pearson
,
H. M.
Pickett
,
S.
Matsuura
, and
G. A.
Blake
,
Astrophys. J. Suppl. Ser.
128
,
371
(
2000
).
151.
M.
Herman
,
J. W. C.
Johns
, and
A. R. W.
McKellar
,
Can. J. Phys.
57
,
397
(
1979
).
152.
153.
J.-M.
Flaud
,
C.
Camy-Peyret
, and
A.
Valentin
,
J. Phys.
33
,
741
(
1972
).
154.
L.
Joly
,
B.
Parvitte
,
V.
Zéninari
,
D.
Courtois
, and
G.
Durry
,
J. Quant. Spectrosc. Radiat. Transfer
102
,
129
(
2006
).
155.
V.-M.
Horneman
,
R.
Anttila
,
S.
Alanko
, and
J.
Pietilä
,
J. Mol. Spectrosc.
234
,
238
(
2005
).
156.
S. P.
Belov
,
I. N.
Kozin
,
O. L.
Polyansky
,
M. Y.
Tret’yakov
, and
N. F.
Zobov
,
J. Mol. Spectrosc.
126
,
113
(
1987
).
157.
S. P.
Belov
(private communication, data from Ref. 150,
1996
).
158.
W. C.
King
and
W.
Gordy
,
Phys. Rev.
93
,
407
(
1954
).
159.
G.
Guelachvili
,
J. Opt. Soc. Am.
73
,
137
(
1983
).
160.
L. R.
Brown
and
J. S.
Margolis
,
J. Quant. Spectrosc. Radiat. Transfer
56
,
283
(
1996
).
161.
R. A.
Toth
,
J. Opt. Soc. Am. B
8
,
2236
(
1991
).
162.
S. N.
Mikhailenko
,
V. G.
Tyuterev
,
K. A.
Keppler
,
B. P.
Winnewisser
,
M.
Winnewisser
,
G.
Mellau
,
S.
Klee
, and
K. N.
Rao
,
J. Mol. Spectrosc.
184
,
330
(
1997
).
163.
R.
Paso
and
V.-M.
Horneman
,
J. Opt. Soc. Am. B
12
,
1813
(
1995
).
164.
R. A.
Toth
,
J. Opt. Soc. Am. B
10
,
1526
(
1993
).
165.
R. A.
Toth
,
J. Opt. Soc. Am. B
10
,
2006
(
1993
).
166.
J.
Kauppinen
,
K.
Jolma
, and
V.-M.
Horneman
,
Appl. Opt.
21
,
3332
(
1982
).
167.
168.
S. N.
Mikhailenko
,
D.
Mondelain
,
E. V.
Karlovets
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
206
,
163
(
2018
).
169.
J. W. C.
Johns
,
J. Opt. Soc. Am. B
2
,
1340
(
1985
).
170.
G.
Guelachvili
and
K. N.
Rao
,
Handbook of Infrared Standards
(
Academic Press
,
Orlando, FL, USA
,
1986
).
171.
R. A.
Toth
,
J. Mol. Spectrosc.
166
,
176
(
1994
).
172.
S. N.
Mikhailenko
,
K. A.
Keppler Albert
,
G.
Mellau
,
S.
Klee
,
B. P.
Winnewisser
,
M.
Winnewisser
, and
V. G.
Tyuterev
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
2687
(
2008
).
173.
S.-M.
Hu
,
B.
Chen
,
Y.
Tan
,
J.
Wang
,
C.-F.
Cheng
, and
A.-W.
Liu
,
J. Quant. Spectrosc. Radiat. Transfer
164
,
37
(
2015
).
174.
C.
Camy-Peyret
,
J. M.
Flaud
,
G.
Guelachvili
, and
C.
Amiot
,
Mol. Phys.
26
,
825
(
1973
).
175.
A.
Jenouvrier
,
L.
Daumont
,
L.
Régalia-Jarlot
,
V. G.
Tyuterev
,
M.
Carleer
,
A. C.
Vandaele
,
S.
Mikhailenko
, and
S.
Fally
,
J. Quant. Spectrosc. Radiat. Transfer
105
,
326
(
2007
).
176.
R. H.
Partridge
,
J. Mol. Spectrosc.
87
,
429
(
1981
).
177.
S. N.
Mikhailenko
,
W.
Le
,
S.
Kassi
, and
A.
Campargue
,
J. Mol. Spectrosc.
244
,
170
(
2007
).
178.
A. S.
Pine
,
M. J.
Coulombe
,
C.
Camy-Peyret
, and
J. M.
Flaud
,
J. Phys. Chem. Ref. Data
12
,
413
(
1983
).
179.
L. H.
Coudert
,
O.
Pirali
,
M.
Vervloet
,
R.
Lanquetin
, and
C.
Camy-Peyret
,
J. Mol. Spectrosc.
228
,
471
(
2004
).
180.
J.
Kauppinen
,
T.
Kärkkäinen
, and
E.
Kyrö
,
J. Mol. Spectrosc.
71
,
15
(
1978
).
181.
J.-Y.
Mandin
,
J.-P.
Chevillard
,
C.
Camy-Peyret
, and
J.-M.
Flaud
,
J. Mol. Spectrosc.
118
,
96
(
1986
).
182.
M. P.
Esplin
,
R. B.
Wattson
,
M. L.
Hoke
, and
L. S.
Rothman
,
J. Quant. Spectrosc. Radiat. Transfer
60
,
711
(
1998
).
183.
R. A.
Toth
,
J. Mol. Spectrosc.
190
,
379
(
1998
).
184.
A.
Valentin
,
C.
Claveau
,
A. D.
Bykov
,
N. N.
Lavrentieva
,
V. N.
Saveliev
, and
L. N.
Sinitsa
,
J. Mol. Spectrosc.
198
,
218
(
1999
).
185.
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
,
J. A.
Lotoski
,
P.
Colarusso
,
K.-Q.
Zhang
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
193
,
118
(
1999
).
186.
S. N.
Mikhailenko
,
V. G.
Tyuterev
,
V. I.
Starikov
,
K. K.
Albert
,
B. P.
Winnewisser
,
M.
Winnewisser
,
G.
Mellau
,
C.
Camy-Peyret
,
R.
Lanquetin
,
J.-M.
Flaud
, and
J. W.
Brault
,
J. Mol. Spectrosc.
213
,
91
(
2002
).
187.
K.
Tereszchuk
,
P. F.
Bernath
,
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
,
N. I.
Libeskind
,
J.
Tennyson
, and
L.
Wallace
,
Astrophys. J.
577
,
496
(
2002
).
188.
R. N.
Tolchenov
and
J.
Tennyson
,
J. Mol. Spectrosc.
231
,
23
(
2005
).
189.
R.
Tolchenov
and
J.
Tennyson
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
559
(
2008
).
190.
A.
Liu
,
O.
Naumenko
,
S.
Kassi
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
1781
(
2009
).
191.
L. R.
Brown
and
C.
Plymate
,
J. Mol. Spectrosc.
199
,
166
(
2000
).
192.
O. L.
Polyansky
,
N. F.
Zobov
,
S.
Viti
,
J.
Tennyson
,
P. F.
Bernath
, and
L.
Wallace
,
J. Mol. Spectrosc.
186
,
422
(
1997
).
193.
O. L.
Polyansky
,
N. F.
Zobov
,
S.
Viti
, and
J.
Tennyson
,
J. Mol. Spectrosc.
189
,
291
(
1998
).
194.
P.
Macko
,
D.
Romanini
,
S. N.
Mikhailenko
,
O. V.
Naumenko
,
S.
Kassi
,
A.
Jenouvrier
,
V. G.
Tyuterev
, and
A.
Campargue
,
J. Mol. Spectrosc.
227
,
90
(
2004
).
195.
D.
Lisak
and
J. T.
Hodges
,
J. Mol. Spectrosc.
249
,
6
(
2008
).
196.
R. N.
Tolchenov
,
J.
Tennyson
,
J. W.
Brault
,
A. A. D.
Canas
, and
R.
Schermaul
,
J. Mol. Spectrosc.
215
,
269
(
2002
).
197.
L. R.
Brown
,
R. A.
Toth
, and
M.
Dulick
,
J. Mol. Spectrosc.
212
,
57
(
2002
).
198.
P.-F.
Coheur
,
P. F.
Bernath
,
M.
Carleer
,
R.
Colin
,
O. L.
Polyansky
,
N. F.
Zobov
,
S. V.
Shirin
,
R. J.
Barber
, and
J.
Tennyson
,
J. Chem. Phys.
122
,
074307
(
2005
).
199.
R. N.
Tennyson
,
O.
Naumenko
,
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
,
J.
Tennyson
,
M.
Carleer
,
P.-F.
Coheur
,
S.
Fally
,
A.
Jenouvrier
, and
A. C.
Vandaele
,
J. Mol. Spectrosc.
233
,
68
(
2005
).
200.
J.-P.
Chevillard
,
J.-Y.
Mandin
,
J.-M.
Flaud
, and
C.
Camy-Peyret
,
Can. J. Phys.
67
,
1065
(
1989
).
201.
M.
Carleer
,
A.
Jenouvrier
,
A.-C.
Vandaele
,
P. F.
Bernath
,
M. F.
Mérienne
,
R.
Colin
,
N. F.
Zobov
,
O. L.
Polyansky
,
J.
Tennyson
, and
V. A.
Savin
,
J. Chem. Phys.
111
,
2444
(
1999
).
202.
N. F.
Zobov
,
D.
Belmiloud
,
O. L.
Polyansky
,
J.
Tennyson
,
S. V.
Shirin
,
M.
Carleer
,
A.
Jenouvrier
,
A.-C.
Vandaele
,
P. F.
Bernath
,
M. F.
Mérienne
, and
R.
Colin
,
J. Chem. Phys.
113
,
1546
(
2000
).
203.
P.
Dupré
,
T.
Gherman
,
N. F.
Zobov
,
R. N.
Tolchenov
, and
J.
Tennyson
,
J. Chem. Phys.
123
,
154307
(
2005
).
204.
F.
Mazzotti
,
O. V.
Naumenko
,
S.
Kassi
,
A. D.
Bykov
, and
A.
Campargue
,
J. Mol. Spectrosc.
239
,
174
(
2006
).
205.
A.
Campargue
,
S.
Mikhailenko
, and
A. W.
Liu
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
2832
(
2008
).
206.
L. A.
Pugh
and
K.
Narahari Rao
,
J. Mol. Spectrosc.
47
,
403
(
1973
).
207.
J.-M.
Flaud
,
C.
Camy-Peyret
,
J.-P.
Maillard
, and
G.
Guelachvili
,
J. Mol. Spectrosc.
65
,
219
(
1977
).
208.
J.-M.
Flaud
,
C.
Camy-Peyret
,
K.
Narahari Rao
,
D.-W.
Chen
, and
Y.-S.
Hoh
,
J. Mol. Spectrosc.
75
,
339
(
1979
).
209.
C.
Camy-Peyret
,
J. M.
Flaud
, and
J.-P.
Maillard
,
J. Phys. Lett.
41
,
L23
(
1980
).
210.
C.
Camy-Peyret
,
J.-M.
Flaud
,
J.-Y.
Mandin
,
J.-P.
Chevillard
,
J.
Brault
,
D. A.
Ramsay
,
M.
Vervloet
, and
J.
Chauville
,
J. Mol. Spectrosc.
113
,
208
(
1985
).
211.
J.-Y.
Mandin
,
J.-P.
Chevillard
,
J.-M.
Flaud
, and
C.
Camy-Peyret
,
Can. J. Phys.
66
,
997
(
1988
).
212.
V.
Dana
,
J.-Y.
Mandin
,
C.
Camy-Peyret
,
J.-M.
Flaud
, and
L. S.
Rothman
,
Appl. Opt.
31
,
1179
(
1992
).
213.
V.
Dana
,
J.-Y.
Mandin
,
C.
Camy-Peyret
,
J.-M.
Flaud
,
J.-P.
Chevillard
,
R. L.
Hawkins
, and
J.-L.
Delfau
,
Appl. Opt.
31
,
1928
(
1992
).
214.
J.-Y.
Mandin
,
V.
Dana
,
C.
Camy-Peyret
, and
J.-M.
Flaud
,
J. Mol. Spectrosc.
152
,
179
(
1992
).
215.
O. L.
Polyansky
,
J. R.
Busler
,
B.
Guo
,
K.
Zhang
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
176
,
305
(
1996
).
216.
O. L.
Polyansky
,
J.
Tennyson
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
186
,
213
(
1997
).
217.
A.
Bykov
,
O.
Naumenko
,
L.
Sinitsa
,
B.
Voronin
,
J.-M.
Flaud
,
C.
Camy-Peyret
, and
R.
Lanquetin
,
J. Mol. Spectrosc.
205
,
1
(
2001
).
218.
O.
Naumenko
and
A.
Campargue
,
J. Mol. Spectrosc.
221
,
221
(
2003
).
219.
S.
Kassi
,
P.
Macko
,
O.
Naumenko
, and
A.
Campargue
,
Phys. Chem. Chem. Phys.
7
,
2460
(
2005
).
220.
T.
Petrova
,
Y.
Poplavskii
,
V.
Serdukov
, and
L.
Sinitsa
,
Mol. Phys.
104
,
2691
(
2006
).
221.
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
,
R. J.
Barber
,
J.
Tennyson
,
P.-F.
Coheur
,
P. F.
Bernath
,
M.
Carleer
, and
R.
Colin
,
J. Mol. Spectrosc.
237
,
115
(
2006
).
222.
O. V.
Boyarkin
and
N. F.
Zobov
(private communication,
2012
).
223.
R. A.
Toth
and
J. S.
Margolis
,
J. Mol. Spectrosc.
55
,
229
(
1975
).
224.
O. L.
Polyansky
,
N. F.
Zobov
,
J.
Tennyson
,
J. A.
Lotoski
, and
P. F.
Bernath
,
J. Mol. Spectrosc.
184
,
35
(
1997
).
225.
S.
Béguier
,
S.
Mikhailenko
, and
A.
Campargue
,
J. Mol. Spectrosc.
265
,
106
(
2011
).
226.
J.-M.
Flaud
,
C.
Camy-Peyret
,
A.
Bykov
,
O.
Naumenko
,
T.
Petrova
,
A.
Scherbakov
, and
L.
Sinitsa
,
J. Mol. Spectrosc.
183
,
300
(
1997
).
227.
R.
Lanquetin
,
L. H.
Coudert
, and
C.
Camy-Peyret
,
J. Mol. Spectrosc.
206
,
54
(
2001
).
228.
See https://spec.jpl.nasa.gov//ftp//pub/catalog/archive/c018005.egy for JPL website,
2005
; accessed 16 March 2020.
229.
H. M.
Pickett
,
J. C.
Pearson
, and
C. E.
Miller
,
J. Mol. Spectrosc.
233
,
174
(
2005
).
230.
National Academies of Sciences, Engineering, and Medicine
,
Frequency Allocations and Spectrum Protection for Scientific Uses
, 2nd ed. (
The National Academies Press
,
Washington D.C.
,
2015
).
231.
S. N.
Mikhailenko
,
S.
Kassi
,
D.
Mondelain
, and
A.
Campargue
,
J. Quant. Spectrosc. Radiat. Transfer
245
,
106840
(
2020
).

Supplementary Material