In this work, we provide the most complete to date reference data for 28 572 rovibrational levels of the electronic ground state of the ozone 16O3 molecule up to the maximum rotational quantum numbers J = 80, Ka = 29 determined from 75 290 experimental transitions covering the range (0.3–7999) cm−1. These energy levels belong to 98 vibrational states extending up to 96.7% of the first dissociation threshold D0 of the molecule. The energy determination procedure is based uniquely on the fundamental Ritz-Planck-Einstein energy conservation principle without use of any approximate Hamiltonian models. A dedicated RITZ computer code produces uncertainties and the correlation matrix for all derived energy levels and permits the prediction of confidence intervals for all dipole-allowed transitions among these levels. The rms deviation of the RITZ transitions for microwave experimental data up to the THz range is 2.6 × 10−6 cm−1. For infrared transitions up to the fundamental and second overtone and combinational bands, including 10 and 5 µm regions important for atmospheric and astrophysical applications, the rms deviation is 1.8 × 10−4 cm−1. For the entire set of lines, the rms deviation is 5.5 × 10−4 cm−1 with the overall dimensionless weighted standard deviation of 0.7. Most of the energy level data is original. For the regions above 6000 cm−1, where empirical data have been previously obtained in the literature from CRDS laser measurements, our data agree well with the published values but provide a more realistic uncertainty analysis. Detailed comparisons of the RITZ transitions with the HITRAN2020 database are discussed and related recommendations are suggested.

1.
R. E.
Neale
,
P. W.
Barnes
,
T. M.
Robson
et al, “
Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020
,”
Photochem. Photobiol. Sci.
20
,
1
67
(
2021
).
2.
A.
De Marco
,
H.
Garcia-Gomez
,
A.
Collalti
,
Y. O.
Khaniabadi
et al, “
Ozone modelling and mapping for risk assessment: An overview of different approaches for human and ecosystems health
,”
Environ. Res.
211
,
113048
(
2022
).
3.
S.
Solomon
, “
The discovery of the Antarctic ozone hole
,”
Nature
575
(
7781
),
46
47
(
2019
).
4.
S.
Yook
,
D. W. J.
Thompson
, and
S.
Solomon
, “
Climate impacts and potential drivers of the unprecedented antarctic ozone holes of 2020 and 2021
,”
Geophys. Res. Lett.
49
,
e2022GL098064
(
2022
).
5.
X.
Lu
,
L.
Zhang
, and
L.
Shen
, “
Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns
,”
Curr. Pollut. Rep.
5
,
238
260
(
2019
).
6.
W.
Liu
,
M. I.
Hegglin
,
R.
Checa-Garcia
,
S.
Li
,
N. P.
Gillett
,
K.
Lyu
,
X.
Zhang
, and
N. C.
Swart
, “
Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming
,”
Nat. Clim. Chang.
12
,
365
372
(
2022
).
7.
N.
Glatthor
,
T.
Von Clarmann
,
G. P.
Stiller
,
M.
Kiefer
,
A.
Laeng
,
B. M.
Dinelli
,
G.
Wetzel
, and
J.
Orphal
, “
Differences in ozone retrieval in MIPAS channels A and AB: A spectroscopic issue
,”
Atmos. Meas. Tech.
11
,
4707
4723
(
2018
).
8.
J.
Cuesta
,
L.
Costantino
,
M.
Beekmann
et al, “
Ozone pollution during the COVID-19 lockdown in the spring of 2020 over Europe, analysed from satellite observations, in situ measurements, and models
,”
Atmos. Chem. Phys.
22
,
4471
4489
(
2022
).
9.
G.
Toon
, “
Ozone spectroscopy evaluation update
,” Report at JPL, NASA, Caltech, available online https://mark4sun.jpl.nasa.gov/report/O3_Spectroscopy_Eval_2021_07_14.pdf,
2021
.
10.
WMO
, “
Scientific assessment of ozone depletion: 2018
,” World Meteorological Organization, Global ozone research and monitoring project, Report No. 58, Geneva,
2018
, https://library.wmo.int/idurl/4/56362.
11.
P.
von Paris
,
F.
Selsis
,
M.
Godolt
,
J. L.
Grenfell
,
H.
Rauer
et al, “
Effect of O3 on the atmospheric temperature structure of early Mars
,”
Icarus
257
,
406
416
(
2015
).
12.
F.
Montmessin
,
J. L.
Bertaux
,
F.
Lefevre
,
E.
Marcq
,
D.
Belyaev
,
J. C.
Gerard
et al, “
A layer of ozone detected in the nightside upper atmosphere of Venus
,”
Icarus
216
,
82
85
(
2011
).
13.
K. S.
Noll
,
R. E.
Johnson
,
A. L.
Lane
,
D. L.
Domingue
, and
H. A.
Weaver
, “
Detection of ozone on Ganymede
,”
Science
273
,
341
343
(
1996
).
14.
K. S.
Noll
,
T. L.
Roush
,
D. P.
Cruikshank
,
R. E.
Johnson
, and
Y. J.
Pendleton
, “
Detection of ozone on Saturn's satellites Rhea and Dione
,”
Nature
388
,
45
47
(
1997
).
15.
J. L.
Grenfell
, “
A review of exoplanetary biosignatures
,”
Phys. Rep.
713
,
1
17
(
2017
).
16.
M.
Scheucher
,
J. L.
Grenfell
,
F.
Wunderlich
,
M.
Godolt
,
F.
Schreier
, and
H.
Rauer
, “
New insights into cosmic-ray-induced biosignature chemistry in Earth-like atmospheres
,”
Astrophys. J.
863
,
6
(
2018
).
17.
J. I.
Steinfeld
,
S. M.
Adler-Golden
, and
J. W.
Gallagher
, “
Critical survey of data on the spectroscopy and kinetics of ozone in the mesosphere and thermosphere
,”
J. Phys. Chem. Ref. Data
16
,
911
951
(
1987
).
18.
J. M.
Flaud
and
R.
Bacis
, “
The ozone molecule: Infrared and microwave spectroscopy
,”
Spectrochim. Acta, Part A
54
,
3
16
(
1998
).
19.
R.
Bacis
,
A. J.
Bouvier
, and
J. M.
Flaud
, “
The ozone molecule: Electronic spectroscopy
,”
Spectrochim. Acta, Part A
54
,
17
34
(
1998
).
20.
S. Y.
Grebenshchikov
,
Z. W.
Qu
,
H.
Zhu
, and
R.
Schinke
, “
New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands
,”
Phys. Chem. Chem. Phys.
9
,
2044
2064
(
2007
).
21.
J.
Orphal
,
J.
Staehelin
,
J.
Tamminen
et al, “
Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015
,”
J. Mol. Spectrosc.
327
,
105
121
(
2016
).
22.
M.
Birk
,
G.
Wagner
,
I. E.
Gordon
, and
B. J.
Drouin
, “
Ozone intensities in the rotational bands
,”
J. Quant. Spectrosc. Radiat. Transfer
226
,
60
65
(
2019
).
23.
A.
Barbe
,
S.
Mikhailenko
,
E.
Starikova
, and
V.
Tyuterev
, “
High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function
,”
Molecules
27
,
911
(
2022
).
24.
S.
Vasilchenko
,
A.
Solodov
,
O.
Egorov
, and
V.
Tyuterev
, “
Accurate absolute absorption cross-sections of the ozone Wulf bands at 1 µm range: Measurements with high-resolution cw-CRDS laser techniques
,”
J. Quant. Spectrosc. Radiat. Transfer
312
,
108817
(
2024
).
25.
C.
Clerbaux
,
A.
Boynard
,
L.
Clarisse
et al, “
Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder
,”
Atmos. Chem. Phys.
9
(
16
),
6041
6054
(
2009
).
26.
G.
Bianchini
,
F.
Castagnoli
,
G.
Di Natale
, and
L.
Palchetti
, “
A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance
,”
Atmos. Meas. Tech.
12
,
619
635
(
2019
).
27.
L.
Coursol
,
Q.
Libois
,
P.
Gauthier
, and
J. P.
Blanchet
, “
Optimal configuration of a far-infrared radiometer to study the Arctic winter atmosphere
,”
J. Geophys. Res.: Atmos.
125
,
e2019JD031773
(
2020
).
28.
S. H.
Zhao
,
X. Y.
Yang
,
Z. Q.
Li
,
Z. T.
Wang
,
Y. H.
Zhang
,
Y.
Wang
,
C. Y.
Zhou
, and
P. F.
Ma
, “
Advances of ozone satellite remote sensing in 60 years
,”
Natl. Remote Sens. Bull.
26
(
5
),
817
833
(
2022
).
29.
M.
Xie
,
M.
Gu
,
Y.
Hu
,
P.
Huang
,
C.
Zhang
,
T.
Yang
, and
C.
Yang
, “
A study on the retrieval of ozone profiles using FY-3D/HIRAS infrared hyperspectral data
,”
Remote Sens.
15
(
4
),
1009
(
2023
).
30.
Earth explorer 9 Candidate mission FORUM—Report for mission selection
,” 21 June 2019, Ref: ESA-EOPSM-FORM-RP-3549, https://esamultimedia.esa.int/docs/EarthObservation/EE9-FORUM-RfMS-ESA-v1.0-FINAL.pdf.
31.
L.
Palchetti
,
H.
Brindley
,
R.
Bantges
,
S. A.
Buehler
,
C.
Camy-Peyret
,
B.
Carli
et al, “
FORUM: Unique far-infrared satellite observations to better understand how Earth radiates energy to space
,”
Bull. Am. Meteorol. Soc.
101
(
12
),
E2030
(
2020
).
32.
M. S.
Johnson
,
A.
Rozanov
,
M.
Weber
,
N.
Mettig
et al, “
TOLNet validation of satellite ozone profiles in the troposphere: Impact of retrieval wavelengths
,”
Atmos. Meas. Tech.
17
(
8
),
2559
2582
(
2024
).
33.
J.-M.
Flaud
,
C.
Camy-Peyret
,
C. P.
Rinsland
,
M. A. H.
Smith
, and
V.
Malathy Devi
,
Atlas of Ozone Spectral Parameters from Microwave to Medium Infrared
(
Academic Press
,
Boston
,
1990
), p.
600p
, ISBN: 0122598903/0-12-259890-3.
34.
L. S.
Rothman
,
I. E.
Gordon
,
Y.
Babikov
,
A.
Barbe
,
D.
Chris Benner
,
P. F.
Bernath
et al, “
The HITRAN2012 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
130
,
4
50
(
2013
).
35.
I. E.
Gordon
,
L. S.
Rothman
,
R. J.
Hargreaves
,
R.
Hashemi
,
E. V.
Karlovets
,
F. M.
Skinner
et al, “
The HITRAN2020 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
277
,
107949
(
2022
).
36.
H. M.
Pickett
,
R. L.
Poynter
,
E. A.
Cohen
,
M. L.
Delitsky
,
J. C.
Pearson
, and
H. S. P.
Muller
, “
Submillimeter, millimeter and microwave spectral line catalog
,”
J. Quant. Spectrosc. Radiat. Transfer
60
,
883
890
(
1998
).
37.
J. C.
Pearson
,
H. S. P.
Muller
,
H. M.
Pickett
,
E. A.
Cohen
, and
B. J.
Drouin
, “
Introduction to submillimeter, millimeter and microwave spectral line catalog
,”
J. Quant. Spectrosc. Radiat. Transfer
111
,
1614
1616
(
2010
).
38.
T.
Delahaye
,
R.
Armante
,
N. A.
Scott
,
N.
Jacquinet-Husson
,
A.
Chédin
,
L.
Crépeau
et al, “
The 2020 edition of the GEISA spectroscopic database
,”
J. Mol. Spectrosc.
380
,
111510
(
2021
).
39.
S. N.
Mikhailenko
,
Y. L.
Babikov
,
V. G.
Tyuterev
, and
A.
Barbe
, “
The databank of ozone spectroscopy on WEB: Spectroscopy and molecular properties of ozone (S&MPO)
,”
Comput. Technol.
7
,
64
70
(
2002
), http://www.ict.nsc.ru/jct/annotation/365?l=eng.
40.
Y. L.
Babikov
,
S. N.
Mikhailenko
,
A.
Barbe
, and
V. G.
Tyuterev
, “
S&MPO – an information system for ozone spectroscopy on the WEB
,”
J. Quant. Spectrosc. Radiat. Transfer
145
,
169
196
(
2014
).
41.
G.
Rixon
,
M. L.
Dubernet
,
N.
Piskunov
,
N.
Walton
,
N.
Mason
,
P.
Le Sidaner
et al, “
VAMDC—The virtual atomic and molecular data centre—A new way to disseminate atomic and molecular data—VAMDC level 1 release
,”
AIP Conf. Proc.
1344
,
107
115
(
2011
).
42.
A.
Barbe
,
S.
Mikhailenko
,
E.
Starikova
, and
V.
Tyuterev
, “
Infrared spectra of 16O3 in the 900–5600 cm−1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists
,”
J. Quant. Spectrosc. Radiat. Transfer
276
,
107936
(
2021
).
43.
V. G.
Tyuterev
,
A.
Barbe
,
L.
Manceron
,
B.
Grouiez
,
S. A.
Tashkun
,
J.
Burgalat
, and
M.
Rotger
, “
Ozone spectroscopy in the terahertz range from first high-resolution synchrotron SOLEIL experiments combined with far-infrared measurements and ab initio intensity calculations
,”
Spectrochim. Acta, Part A
305
,
123456
(
2024
).
44.
M.
Lopez-Puertas
and
F. W.
Taylor
,
Non-LTE Radiative Transfer in the Atmosphere
,
Series on Atmospheric, Oceanic and Planetary Physics
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2001
), Vol.
3
, ISBN: 981-02-4566-1.
45.
A. G.
Feofilov
and
A. A.
Kutepov
, “
Infrared radiation in the mesosphere and lower thermosphere: Energetic effects and remote sensing
,”
Surv. Geophys.
33
,
1231
1280
(
2012
).
46.
M.
Kaufmann
,
S.
Gil-Lopez
,
M.
Lopez-Puertas
,
B.
Funke
,
M.
Garcia-Comas
,
N.
Glatthor
et al, “
Vibrationally excited ozone in the middle atmosphere
,”
J. Atmos. Sol.-Terr. Phys.
68
,
202
212
(
2006
).
47.
B.
Funke
,
M.
Lopez-Puertas
,
M.
Garcia-Comas
,
M.
Kaufmann
,
M.
Hopfner
, and
G. P.
Stiller
, “
GRANADA: A generic RAdiative traNsfer AnD non-LTE population algorithm
,”
J. Quant. Spectrosc. Radiat. Transfer
113
,
1771
1817
(
2012
).
48.
A. K.
Smith
,
V. L.
Harvey
,
M. G.
Mlynczak
,
B.
Funke
,
M.
Garcia-Comas
,
M.
Hervig
et al, “
Satellite observations of ozone in the upper mesosphere
,”
J. Geophys. Res.: Atmos.
118
,
5803
5821
(
2013
).
49.
V. G.
Tyuterev
,
R.
Kochanov
,
A.
Campargue
,
S.
Kassi
,
D.
Mondelain
,
A.
Barbe
et al, “
Does the ‘reef structure’ at the ozone transition state towards the dissociation exist? New insight from calculations and ultrasensitive spectroscopy experiments
,”
Phys. Rev. Lett.
113
(
14
),
143002
(
2014
).
50.
D.
Lapierre
,
A.
Alijah
,
R.
Kochanov
,
V.
Kokoouline
, and
V.
Tyuterev
, “
Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach
,”
Phys. Rev. A
94
(
4
),
042514
(
2016
).
51.
V.
Kokoouline
,
A.
Alijah
, and
V.
Tyuterev
, “
Lifetimes and decay mechanisms of isotopically substituted ozone above the dissociation threshold: Matching quantum and classical dynamics
,”
Phys. Chem. Chem. Phys.
26
(
5
),
4614
4628
(
2024
).
52.
R.
Schinke
,
S. Y.
Grebenshchikov
,
M. V.
Ivanov
, and
P.
Fleurat-Lessard
, “
Dynamical studies of the ozone isotope effect: A status report
,”
Annu. Rev. Phys. Chem.
57
,
625
661
(
2006
).
53.
G.
Guillon
,
P.
Honvault
,
R.
Kochanov
, and
V.
Tyuterev
, “
First-principles computed rate constant for the O + O2 isotopic exchange reaction now matches experiment
,”
J. Phys. Chem. Lett.
9
(
8
),
1931
1936
(
2018
).
54.
C. H.
Yuen
,
D.
Lapierre
,
F.
Gatti
,
V.
Kokoouline
, and
V. G.
Tyuterev
, “
The role of ozone vibrational resonances in the isotope exchange reaction 16O16O + 18O →18O16O + 16O: The time-dependent picture
,”
J. Phys. Chem. A
123
(
36
),
7733
7743
(
2019
).
55.
V.
Kokoouline
,
D.
Lapierre
,
A.
Alijah
, and
V.
Tyuterev
, “
Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold
,”
Phys. Chem. Chem. Phys.
22
(
28
),
15885
15899
(
2020
).
56.
M.
Mirahmadi
,
J.
Perez-Rios
,
O.
Egorov
,
V.
Tyuterev
, and
V.
Kokoouline
, “
Ozone formation in ternary collisions: Theory and experiment reconciled
,”
Phys. Rev. Lett.
128
(
10
),
108501
(
2022
).
57.
C. P.
Rinsland
,
J.-M.
Flaud
,
A.
Perrin
,
M.
Birk
,
G.
Wagner
,
A.
Goldman
et al, “
Spectroscopic parameters for ozone and its isotopes: Recent measurements, outstanding issues, and prospects for improvements to HITRAN
,”
J. Quant. Spectrosc. Radiat. Transfer
82
,
207
218
(
2003
).
58.
A.
Barbe
,
S.
Mikhailenko
,
E.
Starikova
,
M. R.
De Backer
,
V.
Tyuterev
,
D.
Mondelain
et al, “
Ozone spectroscopy in the electronic ground state: High-resolution spectra analyses and update of line parameters since 2003
,”
J. Quant. Spectrosc. Radiat. Transfer
130
,
172
190
(
2013
).
59.
C.
Janssen
,
C.
Boursier
,
P.
Jeseck
, and
Y.
Te
, “
Line parameter study of ozone at 5 and 10 μm using atmospheric FTIR spectra from the ground: A spectroscopic database and wavelength region comparison
,”
J. Mol. Spectrosc.
326
,
48
59
(
2016
).
60.
D. J.
McCaa
and
J. H.
Shaw
, “
The infrared spectrum of ozone
,”
J. Mol. Spectrosc.
25
,
374
397
(
1968
).
61.
D. E.
Snider
and
J. H.
Shaw
, “
Upper state rotational constants for the (v1+v2+v3) combination band of ozone
,”
J. Mol. Spectrosc.
44
,
400
402
(
1972
).
62.
C. P.
Rinsland
,
M. A. H.
Smith
,
V.
Malathy Devi
,
J.-M.
Flaud
, and
C.
Camy-Peyret
, “
The 2ν23 and 2ν21 bands of 16O3 at 4.1-µm: Line positions and intensities
,”
J. Mol. Spectrosc.
139
,
343
352
(
1990
).
63.
M. A. H.
Smith
,
C. P.
Rinsland
,
V.
Malathy Devi
,
J.-M.
Flaud
,
C.
Camy-Peyret
, and
A.
Barbe
, “
The 3.6-μm region of ozone: Line positions and intensities
,”
J. Mol. Spectrosc.
139
,
171
181
(
1990
).
64.
V.
Malathy Devi
,
A.
Perrin
,
J.-M.
Flaud
,
C.
Camy-Peyret
,
C. P.
Rinsland
, and
M. A. H.
Smith
, “
Line positions and intensities for the ν2+3ν3 band of 16O3 around 2.7-µm
,”
J. Mol. Spectrosc.
143
,
381
388
(
1990
).
65.
C.
Camy-Peyret
,
J.-M.
Flaud
,
M. A. H.
Smith
,
C. P.
Rinsland
,
V.
Malathy Devi
et al, “
The 3.3-μm bands of ozone: Line positions and intensities
,”
J. Mol. Spectrosc.
141
,
134
144
(
1990
).
66.
A.
Perrin
,
A. M.
Vasserot
,
J.-M.
Flaud
,
C.
Camy-Peyret
,
V.
Malathy Devi
,
M. A. H.
Smith
et al, “
The 2.5-μm bands of ozone: Line positions and intensities
,”
J. Mol. Spectrosc.
149
,
519
529
(
1991
).
67.
J.-M.
Flaud
,
C.
Camy-Peyret
,
A.
Perrin
,
V. M.
Devi
,
A.
Barbe
et al, “
Line parameters for ozone hot bands in the 3.3-μm spectral region
,”
J. Mol. Spectrosc.
160
,
378
386
(
1993
).
68.
G.
Wagner
,
M.
Birk
,
F.
Schreier
, and
J.-M.
Flaud
, “
Spectroscopic database for ozone in the fundamental spectral regions
,”
J. Geophys. Res.
107
(
D22
),
4626
(
2002
).
69.
J.-M.
Flaud
,
G.
Wagner
,
M.
Birk
,
C.
Camy-Peyret
,
C.
Claveau
et al, “
Ozone absorption around 10 μm
,”
J. Geophys. Res.
108
(
D9
),
4269
(
2003
).
70.
M.
Birk
,
G.
Wagner
,
A.
Barbe
,
M.-R.
De Backer
,
M.
Rotger
,
J.-M.
Flaud
(
2018
). “
ESA SEOM-IAS—Measurement and line parameter database O3 MIR region
,” Zenodo (Version II). https://doi.org/10.5281/zenodo.4428825.
71.
R.
Trambarulo
,
S. N.
Ghosh
,
C. A.
Burrus
, Jr.
, and
W.
Gordy
, “
The molecular structure, dipole moment, and g factor of ozone from its microwave spectrum
,”
J. Chem. Phys.
21
,
851
855
(
1953
).
72.
R. H.
Hughes
, “
The microwave spectrum and structure of ozone
,”
J. Chem. Phys.
21
,
959
960
(
1953
).
73.
R. H.
Hughes
, “
Structure of ozone from the microwave spectrum between 9000 and 45 000 Mc
,”
J. Chem. Phys.
24
,
131
138
(
1956
).
74.
T.
Tanaka
and
Y.
Morino
, “
Coriolis interaction and Anharmonic potential function of ozone from the microwave spectra in the excited vibrational states
,”
J. Mol. Spectrosc.
33
,
538
551
(
1970
).
75.
M. J. C.
Depannemaecker
,
B.
Duterage
, and
M. J.
Bellet
, “
Systematic calculations of rotational spectra of normal and substituted (18O in place of 16O) ozone molecules
,”
J. Quant. Spectrosc. Radiat. Transfer
17
,
519
530
(
1977
).
76.
M.
Lichtenstein
,
J. J.
Gallagher
, and
S. A.
Clough
, “
Millimeter wave spectrum of ozone
,”
J. Mol. Spectrosc.
40
(
1
),
10
26
(
1971
).
77.
N.
Monnanteuil
,
J. C.
Depannemaecker
,
J.
Bellet
,
A.
Barbe
,
C.
Secroun
,
P.
Jouve
,
S.
Giorgianni
,
Y. S.
Hoh
, and
K.
Narahari Rao
, “
Microwave and infrared study of the ν2 state of 16O3 and identification of the (ν3+ ν2)- ν2 band lines at 10-µm
,”
J. Mol. Spectrosc.
71
,
399
413
(
1978
).
78.
V.
Malathy Devi
,
S. P.
Reddy
,
K.
Narahari Rao
,
J.-M.
Flaud
, and
C.
Camy-Peyret
, “
Interpretation of diode laser spectra of ozone at 14 μm: (010) and (020) states of ozone
,”
J. Mol. Spectrosc.
77
,
156
159
(
1979
).
79.
H. M.
Pickett
,
E. A.
Cohen
, and
J. S.
Margolis
, “
The infrared and microwave spectra of ozone for the (0, 0, 0), (1, 0, 0), and (0, 0, 1) states
,”
J. Mol. Spectrosc.
110
,
186
214
(
1985
).
80.
H. M.
Pickett
,
E. A.
Cohen
,
L. R.
Brown
,
C. P.
Rinsland
,
M. A. H.
Smith
,
V.
Devi
,
A.
Goldman
,
A.
Barbe
,
B.
Carli
, and
M.
Carlotti
, “
The vibrational and rotational spectra of ozone for the (0, 1, 0) and (0, 2, 0) states
,”
J. Mol. Spectrosc.
128
,
151
171
(
1988
).
81.
J.-M.
Colmont
,
B.
Bakri
,
J.
Demaison
,
H.
Mader
,
F.
Willaert
,
V. G.
Tyuterev
, and
A.
Barbe
, “
Microwave fourier transform, millimeterwave, and submillimeterwave spectra of ozone in its vibrational ground state
,”
J. Mol. Spectrosc.
233
,
293
296
(
2005
).
82.
M.
Bellini
,
P.
De Natale
,
G.
Di Lonardo
,
L.
Fusina
,
M.
Inguscio
, and
M.
Prevedelli
, “
Tunable far infrared spectroscopy of 16O3 ozone
,”
J. Mol. Spectrosc.
152
,
256
259
(
1992
).
83.
P.
De Natale
,
L.
Lorini
,
M.
Inguscio
,
I. G.
Nolt
,
J. H.
Park
,
G.
Di Lonardo
et al, “
Accurate frequency measurements for H2O and 16O3 in the 119 cm−1 OH atmospheric window
,”
Appl. Opt.
36
,
8526
8532
(
1997
).
84.
A.
Barbe
,
C.
Secroun
,
P.
Jouve
,
N.
Monnanteuil
,
J. C.
Depannemaecker
,
B.
Duterage
,
J.
Bellet
, and
P.
Pinson
, “
Infrared and microwave high-resolution spectrum of the v3 band of ozone
,”
J. Mol. Spectrosc.
64
,
343
364
(
1977
).
85.
K. M.
Mack
and
J. S.
Muenter
, “
Stark and Zeeman properties of ozone from molecular beam spectroscopy
,”
J. Chem. Phys.
66
,
5278
5283
(
1977
).
86.
W.
Meerts
,
S.
Stolte
, and
A.
Dymanus
, “
Electric and magnetic properties of ozone by molecular beam electric resonance spectroscopy
,”
Chem. Phys.
19
,
467
472
(
1977
).
87.
M.
Carlotti
,
G.
Di Lonardo
,
L.
Fusina
,
A.
Trombetti
,
A.
Bonetti
,
B.
Carli
, and
F.
Mencaraglia
, “
The high-resolution spectrum of ozone between 8 and 150 cm−1
,”
J. Mol. Spectrosc.
107
,
84
93
(
1984
).
88.
M.
Birk
,
G.
Wagner
, and
J.-M.
Flaud
, “
Experimental linestrengths of far-infrared pure rotational transitions of ozone
,”
J. Mol. Spectrosc.
163
,
245
261
(
1994
).
89.
L.
Manceron
,
A.
Barbe
,
V.
Tyuterev
et al, “
Far infrared spectroscopy of the ozone molecule and its isotopomers between 50 and 800 cm−1
,” in
ASA-HITRAN Conference
,
Reims
,
2022
.
90.
A.
Barbe
,
L.
Manceron
,
B.
Grouiez
,
V.
Tyuterev
, “
Bending ozone states and transitions revisited using SOLEIL experiments
,”
J. Quant. Spectrosc. Radiat. Transfer
(to be published) (
2025
).
91.
M.
El-Sherbing
,
E. A.
Ballik
,
J.
Shewchun
,
B. K.
Garside
, and
J.
Reid
, “
High sensitivity point monitoring of ozone, and high resolution spectroscopy of the ν3 band of ozone using a tunable semi-conductor diode laser
,”
Appl. Opt.
18
,
1198
1203
(
1979
).
92.
M.
Lyszyk
,
J. C.
Depannemaecker
,
J. G.
Bantegnie
,
F.
Herlemont
,
J.
Lemaire
, and
Y.
Riant
, “
Absolute diode-laser frequency calibration using varactor mixing with a stabilized CO2 laser. Ozone spectrum near the 9R6 CO2 frequency
,”
Opt. Commun.
37
,
53
55
(
1981
).
93.
T.
Kostiuk
,
J. J.
Hillman
, and
J. L.
Faris
, “
Precision heterodyne measurements of ozone spectral lines near 9.5 μm
,”
J. Mol. Spectrosc.
89
,
397
404
(
1981
).
94.
M.
Guinet
,
D.
Mondelain
,
C.
Janssen
, and
C.
Camy-Peyret
, “
Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument
,”
J. Quant. Spectrosc. Radiat. Transfer
111
,
961
972
(
2010
).
95.
A.
Goldman
,
J. R.
Gillis
,
D. G.
Murcray
,
A.
Barbe
, and
C.
Secroun
, “
Analysis of the ν2 and 2ν2- ν2 ozone bands from high-resolution infrared atmospheric spectra
,”
J. Mol. Spectrosc.
96
,
279
287
(
1982
).
96.
C.
Claveau
,
C.
Camy-Peyret
,
A.
Valentin
, and
J.-M.
Flaud
, “
Absolute intensities of the ν1 and ν3 bands of 16O3
,”
J. Mol. Spectrosc.
206
,
115
125
(
2001
).
97.
M. A. H.
Smith
,
V.
Malathy Devi
,
D.
Chris Benner
, and
C. P.
Rinsland
, “
Absolute intensities of 16O3 lines in the 9-11 µm region
,”
J. Geophys. Res.
106
(
9
),
9909
9921
(
2001
).
98.
C.
Janssen
,
C.
Boursier
,
H.
Elandaloussi
,
P.
Jeseck
,
D.
Koshelev
,
P.
Marie-Jeanne
et al, “
Multi-spectral investigation of ozone: Part I. Setup & uncertainty budget
,”
J. Quant. Spectrosc. Radiat. Transfer
279
,
108051
(
2022
).
99.
D.
Jacquemart
,
C.
Boursier
,
H.
Elandaloussi
,
P.
Jeseck
,
Y.
Te
, and
C.
Janssen
, “
Multi-spectral investigation of ozone: Part II. Line intensities at 5 μm and 10 μm at one percent accuracy
,”
J. Quant. Spectrosc. Radiat. Transf.
279
,
108050
(
2022
).
100.
M.
Birk
,
G.
Wagner
,
J.-M.
Flaud
, and
D.
Hausamann
, “
Line strengths in the ν32 hot bands of ozone
,”
J. Mol. Spectrosc.
163
,
262
275
(
1994
).
101.
A.
Barbe
,
A.
Chichery
,
V. G.
Tyuterev
,
S.
Taskhun
, and
S.
Mikhailenko
, “
The 2ν2 and 3ν2 - ν2 bands of ozone
,”
Spectrochim. Acta, Part A
54
,
1935
1945
(
1998
).
102.
A.
Barbe
,
C.
Secroun
,
P.
Jouve
,
C.
Camy-Peyret
, and
J.-M.
Flaud
, “
High resolution infrared spectrum of the ν23 and ν12 bands of ozone
,”
J. Mol. Spectrosc.
75
,
103
(
1979
).
103.
V.
Tyuterev
,
A.
Barbe
,
S.
Mikhailenko
,
E.
Starikova
, and
Y.
Babikov
, “
Towards the intensity consistency of the ozone bands in the infrared range: Ab initio corrections to the S&MPO database
,”
J. Quant. Spectrosc. Radiat. Transfer
272
,
107801
(
2021
).
104.
A.
Barbe
,
O. N.
Sulakshina
,
J. J.
Plateaux
,
A.
Hamdouni
, and
S.
Bouazza
, “
High-resolution infrared spectra of ozone in the 2300–2600 cm−1 region
,”
J. Mol. Spectrosc.
170
,
244
250
(
1995
).
105.
A.
Barbe
and
J. J.
Plateaux
, “
Analysis of the 2ν1+2ν3 Band of ozone: Line positions and intensities
,”
J. Quant. Spectrosc. Radiat. Transfer
55
,
449
455
(
1996
).
106.
A.
Barbe
,
S. N.
Mikhailenko
,
J. J.
Plateaux
, and
V. G.
Tyuterev
, “
First study of the v2=3 dyad (130)/(031) of ozone through the analysis of hot bands in the 2300 – 2600 cm−1 region
,”
J. Mol. Spectrosc.
187
,
70
74
(
1998
).
107.
A.
Barbe
,
M.-R.
De Backer
,
E.
Starikova
,
S. A.
Tashkun
,
X.
Thomas
, and
V. G.
Tyuterev
, “
FTS high resolution spectra of 16O3 in 3500 and 5500 cm−1 regions. First example of new theoretical modelling for a polyad of strongly coupled states
,”
J. Quant. Spectrosc. Radiat. Transfer
113
,
829
839
(
2012
).
108.
A.
Barbe
,
S. N.
Mikhailenko
, and
J. J.
Plateaux
, “
First observation of the v2=3 state of ozone: The (131) state through analysis of cold and hot bands. Study of v2 behavior
,”
J. Mol. Spectrosc.
184
,
448
453
(
1997
).
109.
A.
Barbe
,
O. N.
Sulakshina
,
J. J.
Plateaux
,
V. G.
Tyuterev
, and
S.
Bouazza
, “
Line positions and intensities of the 3ν13 band of ozone
,”
J. Mol. Spectrosc.
175
,
296
302
(
1996
).
110.
A.
Barbe
and
S.
Mikhailenko
, “
Cold and hot ozone bands of the (023)/(122)/(400) interacting states
,” in
Proceedings of the XX International Symposium ‘Atmospheric and Ocean Optics. Atmospheric Physics’ June 23-27
(
IAO SB RAS
,
Novosibirsk, Russia
,
2014
), pp.
A124
A127
, https://symp.iao.ru/files/symp/aoo/20/Section%20A.pdf.
111.
A.
Barbe
,
S. N.
Mikhailenko
,
V. G.
Tyuterev
,
A.
Hamdouni
, and
J. J.
Plateaux
, “
Analysis of the 2ν1+2ν23 band of ozone
,”
J. Mol. Spectrosc.
171
,
583
588
(
1995
).
112.
A.
Barbe
,
S. N.
Mikhailenko
,
J. J.
Plateaux
, and
V. G.
Tyuterev
, “
Analysis of the 2ν12+2ν3 band of ozone
,”
J. Mol. Spectrosc.
182
,
333
341
(
1997
).
113.
A.
Barbe
,
J. J.
Plateaux
,
V. G.
Tyuterev
, and
S. N.
Mikhailenko
, “
Analysis of high resolution measurements of the 2ν1+3ν3 bands of ozone: Coriolis interaction with the ν1+3ν2+2ν3 band
,”
J. Quant. Spectrosc. Radiat. Transfer
59
,
185
194
(
1998
).
114.
A.
Barbe
,
J. J.
Plateaux
,
S. N.
Mikhailenko
, and
V. G.
Tyuterev
, “
Infrared spectrum of ozone in the 4600 and 5300 cm−1 regions: High order accidental resonances through the analysis of ν1+2ν2+3ν32, ν1+2ν2+3ν3, and 4ν13 bands
,”
J. Mol. Spectrosc.
185
,
408
416
(
1997
).
115.
A.
Barbe
,
A.
Chichery
,
V. G.
Tyuterev
,
S. A.
Taskhun
, and
S. N.
Mikhailenko
, “
Infrared high-resolution spectra of ozone in the range 5500 – 5570 cm−1: Analysis of ν2+5ν3 and ν12+4ν3 bands
,”
J. Phys. B: At. Mol. Opt. Phys.
31
,
2559
2569
(
1998
).
116.
A.
Barbe
and
A.
Chichery
, “
The 2ν12+3ν3 band of 16O3: Line positions and intensities
,”
J. Mol. Spectrosc.
192
,
102
110
(
1998
).
117.
A.
Barbe
(unpublished) (
2021
).
118.
S.
Bouazza
,
S. N.
Mikhailenko
,
A.
Barbe
,
L.
Regalia
,
V. G.
Tyuterev
, and
J. J.
Plateaux
, “
The ν12+2ν3 and ν2+3ν3 bands of 16O3
,”
J. Mol. Spectrosc.
174
,
510
519
(
1995
).
119.
S.
Bouazza
,
A.
Barbe
, and
J. J.
Plateaux
, “
Line positions and intensities for the 2ν123 band of 16O3
,”
J. Mol. Spectrosc.
171
,
86
90
(
1995
).
120.
J.-M.
Flaud
,
A.
Barbe
,
C.
Camy-Peyret
, and
J. J.
Plateaux
, “
High resolution analysis of the 5ν3, 3ν123, and ν1+4ν3 bands of 16O3: Line positions and intensities
,”
J. Mol. Spectrosc.
177
,
34
39
(
1996
).
121.
A.
Chichery
,
A.
Barbe
,
V. G.
Tyuterev
, and
J. J.
Plateaux
, “
Analysis of high resolution measurements of the ν1+5ν3 band of ozone: Coriolis interactions with the 6ν3 and 3ν12+2ν3 bands
,”
Mol. Phys.
94
,
751
757
(
1998
).
122.
S. N.
Mikhailenko
,
A.
Barbe
,
J. J.
Plateaux
, and
V. G.
Tyuterev
, “
New analysis of 2ν12, ν123, and ν2+2ν3 bands of ozone in the 2600 – 2900 cm−1 region
,”
J. Mol. Spectrosc.
196
,
93
101
(
1999
).
123.
S.
Mikhailenko
,
A.
Barbe
, and
V. G.
Tyuterev
, “
Extended analysis of line positions and intensities of ozone bands in the 2900 – 3400 cm−1 region
,”
J. Mol. Spectrosc.
215
,
29
41
(
2002
).
124.
S. N.
Mikhailenko
and
A.
Barbe
, “
High resolution infrared spectrum of 16O3: The 3600 – 4300 cm−1 range reinvestigated
,”
J. Quant. Spectrosc. Radiat. Transfer
244
,
106823
(
2020
).
125.
S. N.
Mikhailenko
,
A.
Barbe
,
V. G.
Tyuterev
,
L.
Regalia
, and
J. J.
Plateaux
, “
Line positions and intensities of the ν12+3ν3, ν2+4ν3, and 3ν1+2ν2 bands of ozone
,”
J. Mol. Spectrosc.
180
,
227
235
(
1996
).
126.
M. R.
De Backer-Barilly
,
A.
Barbe
, and
V. G.
Tyuterev
, “
First observation of the 3ν1+2ν33 band of 16O3: Problem of consistency between cold and hot band intensities
,”
Mol. Phys.
102
,
1707
1716
(
2004
).
127.
V. G.
Tyuterev
,
R. V.
Kochanov
,
S. A.
Tashkun
,
F.
Holka
, and
P. G.
Szalay
, “
New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range
,”
J. Chem. Phys.
139
,
134307
(
2013
).
128.
V. G.
Tyuterev
,
R. V.
Kochanov
, and
S. A.
Tashkun
, “
Analytical representation for accurate potential energy function of the ozone molecule and extended vibration calculations
,” in
Proceedings of the XVII International Symposium HighRus-2012
(
Publishing House of IAO SB RAS
,
Tomsk
,
2012
), pp.
29
50
, ISBN: 978-5-94458-133-4 http://symp.iao.ru/en/hrms/17/proceedings.
129.
H.
Wenz
,
W.
Demtroder
, and
J.-M.
Flaud
, “
Highly sensitive absorption spectroscopy of the ozone molecule around 1.5 μm
,”
J. Mol. Spectrosc.
209
,
267
277
(
2001
).
130.
D.
Romanini
,
A. A.
Kachanov
, and
F.
Stoeckel
, “
Diode laser cavity ring down spectroscopy
,”
Chem. Phys. Lett.
270
(
5–6
),
538
545
(
1997
).
131.
S.
Kassi
and
A.
Campargue
, “
Cavity ring down spectroscopy with 5*10−13 cm−1 sensitivity
,”
J. Chem. Phys.
137
,
234201
(
2012
).
132.
A.
Campargue
,
M.-R.
De Backer-Barilly
,
A.
Barbe
,
V. G.
Tyuterev
, and
S.
Kassi
, “
The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm−1: New observations and exhaustive review
,”
Phys. Chem. Chem. Phys.
10
,
2925
2946
(
2008
).
133.
S.
Vasilchenko
,
A.
Barbe
,
E.
Starikova
,
S.
Kassi
,
D.
Mondelain
,
A.
Campargue
, and
V.
Tyuterev
, “
Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics
,”
Phys. Rev. A
102
,
052804
(
2020
).
134.
S.
Kassi
,
A.
Campargue
,
M.-R.
De Backer-Barilly
, and
A.
Barbe
, “
The ν1+3ν2+3ν3 and 4ν1+ ν2+ ν3 bands of ozone by CW-cavity ring down spectroscopy betwwen 5900 and 5960 cm−1
,”
J. Mol. Spectrosc.
244
,
122
129
(
2007
).
135.
A.
Barbe
,
M.-R.
De Backer-Barilly
,
V. G.
Tyuterev
,
A.
Campargue
,
D.
Romanini
, and
S.
Kassi
, “
CW-cavity ring down spectroscopy of the ozone molecule in the 5980-6220 cm−1 region
,”
J. Mol. Spectrosc.
242
,
156
175
(
2007
).
136.
A.
Barbe
,
M.-R.
De Backer-Barilly
,
V. G.
Tyuterev
,
S.
Kassi
, and
A.
Campargue
, “
CW-cavity ring down spectroscopy of the ozone molecule in the 6220-6400 cm−1 region
,”
J. Mol. Spectrosc.
246
,
22
38
(
2007
).
137.
A.
Barbe
,
M.-R.
De Backer-Barilly
,
V. G.
Tyuterev
,
S.
Kassi
, and
A.
Campargue
, “
Detection and analysis of new bands of 16O3 by CRDS between 6500 and 7300 cm−1
,”
J. Mol. Spectrosc.
269
,
175
186
(
2011
).
138.
A.
Campargue
,
S.
Kassi
,
D.
Romanini
,
A.
Barbe
,
M.-R.
De Backer-Barilly
, and
V. G.
Tyuterev
, “
CW-cavity ring down spectroscopy of the ozone molecule in the 6625-6830 cm−1 region
,”
J. Mol. Spectrosc.
240
,
1
13
(
2006
).
139.
A.
Campargue
,
S.
Kassi
,
D.
Mondelain
,
A.
Barbe
,
E.
Starikova
,
M.-R.
De Backer
, and
V. G.
Tyuterev
, “
Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold
,”
J. Quant. Spectrosc. Radiat. Transfer
152
,
84
93
(
2015
).
140.
M.-R.
De Backer
,
A.
Barbe
,
E.
Starikova
,
V. G.
Tyuterev
,
S.
Kassi
, and
A.
Campargue
, “
Detection and analysis of four new bands in CRDS 16O3 spectra between 7300 and 7600 cm−1
,”
J. Mol. Spectrosc.
272
,
43
50
(
2012
).
141.
N.
Aslund
, “
A data processing system for spectra of diatomic molecules
,”
Ark. Fysic.
30
,
377
396
(
1965
).
142.
J.-M.
Flaud
,
C.
Camy-Peyret
, and
J. P.
Maillard
, “
Higher ro-vibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 2800-6200 cm−1
,”
Mol. Phys.
32
,
499
521
(
1976
).
143.
S. A.
Tashkun
,
V. I.
Perevalov
, and
J. L.
Teffo
, “
Global fittings of the vibrational–rotational line positions of the 12C16O17O and 12C16O18O isotopic species of carbon dioxide
,”
J. Mol. Spectrosc.
210
,
137
145
(
2001
).
144.
S. A.
Tashkun
,
V. I.
Perevalov
,
J. L.
Teffo
,
A. D.
Bykov
, and
N. N.
Lavrentieva
, “
CDSD-1000, the high-temperature carbon dioxide spectroscopic databank
,”
J. Quant. Spectrosc. Radiat. Transfer
82
,
165
196
(
2003
).
145.
T.
Furtenbacher
,
A. G.
Csaszar
, and
J.
Tennyson
, “
Marvel: Measured active rotational–vibrational energy levels
,”
J. Mol. Spectrosc.
245
,
115
125
(
2007
).
146.
A. E.
Kramida
, “
The program LOPT for least-squares optimization of energy levels
,”
Comput. Phys. Commun.
182
(
2
),
419
434
(
2011
).
147.
J. K. G.
Watson
, “
Robust weighting in least-squares fits
,”
J. Mol. Spectrosc.
219
,
326
328
(
2003
).
148.
S. A.
Tashkun
,
T. I.
Velichko
, and
S. N.
Mikhailenko
, “
Critical evaluation of measured pure-rotation and rotation-vibration line positions and an experimental dataset of energy levels of 12C16O in X1Σ+ state
,”
J. Quant. Spectrosc. Radiat. Transfer
111
(
9
),
1106
1116
(
2010
).
149.
S. N.
Mikhailenko
,
V. G.
Tyuterev
, and
G.
Mellau
, “
(000) and (010) states of H218O: Analysis of rotational transitions in hot emission spectrum in the 400-850 cm−1 region
,”
J. Mol. Spectrosc.
217
,
195
211
(
2003
).
150.
G.
Mellau
,
S. N.
Mikhailenko
,
E. N.
Starikova
,
S. A.
Tashkun
,
H.
Over
, and
V. G.
Tyuterev
, “
Rotational levels of the (000) and (010) states of D216O from hot emission spectra in the 320-860 cm−1 region
,”
J. Mol. Spectrosc.
224
,
32
60
(
2004
).
151.
S. N.
Mikhailenko
,
G. C.
Mellau
,
E. N.
Starikova
,
S. A.
Tashkun
, and
V. G.
Tyuterev
, “
Analysis of the first triad of interacting states (020), (100), and (001) of D216O from hot emission spectra
,”
J. Mol. Spectrosc.
233
,
32
59
(
2005
).
152.
E. N.
Starikova
,
S. N.
Mikhailenko
,
G. C.
Mellau
, and
V. G.
Tyuterev
, “
Analysis of (030), (110), and (011) interacting states of D216O from hot temperature emission spectra
,”
Proc. SPIE
6580
,
658008
(
2006
).
153.
S. N.
Mikhailenko
,
S. A.
Tashkun
,
T. A.
Putilova
,
E. N.
Starikova
,
L.
Daumont
,
A.
Jenouvrier
et al, “
Critical evaluation of rotation-vibration transitions and an experimental dataset of energy levels of HD18O
,”
J. Quant. Spectrosc. Radiat. Transfer
110
,
597
608
(
2009
).
154.
G. C.
Mellau
,
S. N.
Mikhailenko
, and
V. G.
Tyuterev
, “
Hot water emission spectra: Rotational energy levels of the (000) and (010) states of HD17O
,”
J. Mol. Spectrosc.
308-309
,
6
19
(
2015
).
155.
N.
Monnanteuil
and
J.-M.
Colmont
, “
Self-Broadening in the millimeter-wave spectrum of ozone
,”
J. Quant. Spectrosc. Radiat. Transfer
29
,
131
136
(
1983
).
156.
S. A.
Tashkun
,
S. N.
Mikhailenko
,
A.
Barbe
,
E. N.
Starikova
, and
V. G.
Tyuterev
, “
RITZ energy levels of 16O3 deduced from experimental spectra: Critical analysis of HITRAN and S&MPO transition frequencies
,” in
The XX Symposium on High Resolution Molecular Spectroscopy, Lake Baikal, Irkutsk, Russia, July 03-07
(
Publishing House of IAO SB RAS
,
Tomsk
,
2023
), Talk F4, https://symp.iao.ru/files/symp/hrms/20/presentation_15538.pdf.
157.
C.
Salomon
, “
Ramsey fringes and high resolution spectroscopy in the infrared
,” PhD Thesis,
Laboratoire de Physique des Lasers, Paris 13 University
,
Paris
,
1984
.
158.
B.
Rusic
, “
Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne)
,” Thermochem. Network Version 1.110,
2010
, https://atct.anl.gov/.
159.
F.
Holka
,
P. G.
Szalay
,
T.
Muller
, and
V. G.
Tyuterev
, “
Toward an improved ground state potential energy surface of ozone
,”
J. Phys. Chem. A
114
,
9927
9935
(
2010
).
160.
R.
Dawes
,
P.
Lolur
,
A.
Li
,
B.
Jiang
, and
H.
Guo
, “
Communication: An accurate global potential energy surface for the ground electronic state of ozone
,”
J. Chem. Phys.
139
,
201103
(
2013
).
161.
O.
Egorov
,
R. V.
Kochanov
,
V.
Tyuterev
, and
V.
Kokoouline
, “
Long-range ab initio potential energy surface for the ground electronic state of the ozone molecule with the accurate dissociation asymptote
,”
Chem. Phys. Lett.
830
,
140819
(
2023
).
162.
R. J.
Le Roy
, “
Uncertainty, sensitivity, convergence, and rounding in performing and reporting least-squares fits
,”
J. Mol. Spectrosc.
191
,
223
231
(
1998
).
163.
V.
Tyuterev
,
S.
Tashkun
,
M.
Rey
, and
A.
Nikitin
, “
High-order contact transformations of molecular Hamiltonians: General approach, fast computational algorithm and convergence of ro-vibrational polyad models
,”
Mol. Phys.
120
(
15-16
),
e2096140
(
2022
).
164.
V. G.
Tyuterev
, “
The generating function approach to the formulation of the effective rotational Hamiltonian. A simple closed form model describing strong centrifugal distortion in water-type nonrigid molecules
,”
J. Mol. Spectrosc.
151
(
1
),
97
129
(
1992
).
165.
V. I.
Starikov
,
S. A.
Tashkun
, and
V. G.
Tyuterev
, “
Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method
,”
J. Mol. Spectrosc.
151
(
1
),
130
147
(
1992
).
166.
S. N.
Mikhailenko
,
V. G.
Tyuterev
,
V. I.
Starikov
,
K. K.
Albert
,
B. P.
Winnewisser
,
M.
Winnewisser
et al, “
Water spectra in the region 4200–6250 cm−1, extended analysis of ν12, ν23, and 3ν2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations
,”
J. Mol. Spectrosc.
213
(
2
),
91
121
(
2002
).
167.
V. F.
Golovko
,
S. N.
Mikhailenko
, and
V. G.
Tyuterev
, “
Application of the Pade-form Hamiltonians for processing of vibration-rotation spectra of diatomic and triatomic molecules
,”
J. Mol. Struct.
218
,
291
296
(
1990
).
168.
B. J.
Drouin
,
T. J.
Crowford
, and
S.
Yu
, “
Validation of ozone intensities at 10 µm with THz spectrometry
,”
J. Quant. Spectrosc. Radiat. Transfer
203
,
282
(
2017
).
169.
V. G.
Tyuterev
,
R. V.
Kochanov
, and
S. A.
Tashkun
, “
Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands
,”
J. Chem. Phys.
146
,
064304
(
2017
).
170.
V. G.
Tyuterev
,
A.
Barbe
,
D.
Jacquemart
,
C.
Janssen
,
S. N.
Mikhailenko
, and
E. N.
Starikova
, “
Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 μm ranges
,”
J. Chem. Phys.
150
,
184303
(
2019
).
171.
O. L.
Polyansky
,
N. F.
Zobov
,
I. I.
Mizus
,
A. A.
Kyuberis
,
L.
Lodi
, and
J.
Tennyson
, “
Potential energy surface, dipole moment surface and the intensity calculations for the 10 µm, 5 µm and 3 µm bands of ozone
,”
J. Quant. Spectrosc. Radiat. Transfer
210
,
127
135
(
2018
).
172.
D.
Jacquemart
,
V. Y.
Makhnev
,
N. F.
Zobov
,
J.
Tennyson
, and
O. L.
Polyansky
, “
Synthesis of ab initio and effective Hamiltonian line lists for ozone
,”
J. Quant. Spectrosc. Radiat. Transfer
269
,
107651
(
2021
).
You do not currently have access to this content.