Electron collision cross section data are complied from the literature for electron collisions with the carbon dioxide molecule, CO2 and the ion. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, rotational excitation, vibrational excitation, electronic excitation, dissociative processes and ionization. The literature has been surveyed up to the end 2023. For each of these processes, the recommended values of the cross sections are presented with an estimated uncertainty.
9. References
1.
A.
Bogaerts
and G.
Centi
, “Plasma technology for CO2 conversion: A personal perspective on prospects and gaps
,” Front. Energy Res.
8
, 111
(2020
).2.
G.
Centi
, S.
Perathoner
, and G.
Papanikolaou
, “Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis
,” J. CO2 Utiliz.
54
, 101775
(2021
).3.
L. D.
Pietanza
, G.
Colonna
, and M.
Capitelli
, “Self-consistent state-to-state kinetic modeling of CO2 cold plasmas: Insights on the role of electronically excited states
,” Plasma Chem. Plasma Process.
44
, 1431
(2023
).4.
S.
Ullah
, Y.
Gao
, L.
Dou
, Y.
Liu
, T.
Shao
, Y.
Yang
, and A. B.
Murphy
, “Recent trends in plasma-assisted CO2 methanation: A critical review of recent studies
,” Plasma Chem. Plasma Process.
43
, 1335
–1383
(2023
).5.
J.
Dvořák
, M.
Rankovič
, K.
Houfek
, P.
Nag
, R.
Čurík
, J.
Fedor
, and M.
Čížek
, “Vibrational excitation in the e + CO2 system: Analysis of the two-dimensional energy-loss spectrum
,” Phys. Rev. A
106
, 062807
(2022
).6.
G. V.
Naidis
and N. Y.
Babaeva
, “Modeling of vibrational excitation dynamics in a nanosecond CO2 discharge
,” J. Phys. D: Appl. Phys.
56
, 015202
(2023
).7.
C. B.
Moore
, R. E.
Wood
, B.
Hu
, and J. T.
Yardley
, “Vibrational energy transfer in CO2 lasers
,” J. Chem. Phys.
46
, 4222
–4231
(1967
).8.
C.
Fromentin
, T.
Silva
, T. C.
Dias
, E.
Baratte
, O.
Guaitella
, and V.
Guerra
, “Validation of non-equilibrium kinetics in CO2–N2 plasmas
,” Plasma Sources Sci. Technol.
32
, 054004
(2023
).9.
G.
Colonna
, M.
Capitelli
, S.
Debenedictis
, C.
Gorse
, and F.
Paniccia
, “Electron energy distribution functions in CO2 laser mixture: The effects of second kind collisions from metastable electronic states
,” Contrib. Plasma Phys.
31
, 575
–579
(1991
).10.
M.-Y.
Song
, H.
Cho
, G. P.
Karwasz
, V.
Kokoouline
, and J.
Tennyson
, “Cross sections for electron collisions with N2, , and
,” J. Phys. Chem. Ref. Data
52
, 023104
(2023
).11.
S.
Kelly
, C.
Verheyen
, A.
Cowley
, and A.
Bogaerts
, “Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma
,” Chem
8
, 2797
–2816
(2022
).12.
G. P.
Karwasz
, R. S.
Brusa
, and A.
Zecca
, “One century of experiments on electron-atom and molecule scattering: A critical review of integral cross-sections. II. Polyatomic molecules
,” Riv. Nuovo Cimento
24
, 1
–118
(2001
).13.
Y.
Itikawa
, “Cross sections for electron collisions with carbon dioxide
,” J. Phys. Chem. Ref. Data
31
, 749
–767
(2002
).14.
T.
Shirai
, T.
Tabata
, and H.
Tawara
, “Analitic cross secitons for electron collisions with CO, CO2, and H2O relevant to edge plasma impurities
,” At. Data Nucl. Data Tables
79
, 143
–184
(2001
).15.
K.
Anzai
, H.
Kato
, M.
Hoshino
, H.
Tanaka
, Y.
Itikawa
, L.
Campbell
, M. J.
Brunger
, S. J.
Buckman
, H.
Cho
, F.
Blanco
, G.
García
, P.
Limão-Vieira
, and O.
Ingólfsson
, “Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O
,” Eur. Phys. J. D
66
, 36
(2012
).16.
Y.
Nakamura
, “Drift velocity and longitudinal diffusion coefficient of electrons in CO2-Ar mixtures and electron collision cross sections for CO2 molecules
,” Aust. J. Phys.
48
, 357
–364
(1995
).17.
H.
Alvarez-Pol
, I.
Duran
, and R.
Lorenzo
, “On the cross section of low-energy electron collisions on CH4 and CO2
,” J. Phys. B: At., Mol. Opt. Phys.
30
, 2455
(1997
).18.
T.
Wróblewski
, G. P.
Karwasz
, H.
Nowakowska
, J.
Mechlińska-Drewko
, V. T.
Novaković
, and Z. L.
Petrović
, “Semiempirical analysis of electron scattering cross sections in N2O and CO2
,” Czech J. Phys.
54
, C742
–C746
(2004
).19.
M.
Grofulović
, L. L.
Alves
, and V.
Guerra
, “Electron-neutral scattering cross sections for CO2: A complete and consistent set and an assessment of dissociation
,” J. Phys. D: Appl. Phys.
49
, 395207
(2016
).20.
M.-Y.
Song
, J.-S.
Yoon
, H.
Cho
, Y.
Itikawa
, G. P.
Karwasz
, V.
Kokoouline
, Y.
Nakamura
, and J.
Tennyson
, “Cross sections for electron collisions with methane
,” J. Phys. Chem. Ref. Data
44
, 023101
(2015
).21.
M.-Y.
Song
, J.-S.
Yoon
, H.
Cho
, G. P.
Karwasz
, V.
Kokoouline
, Y.
Nakamura
, and J.
Tennyson
, “Cross sections for electron collisions with acetylene
,” J. Phys. Chem. Ref. Data
46
, 013106
(2017
).22.
M.-Y.
Song
, J.-S.
Yoon
, H.
Cho
, G. P.
Karwasz
, V.
Kokoouline
, Y.
Nakamura
, and J.
Tennyson
, “Electron collision cross sections with NO, N2O and NO2
,” J. Phys. Chem. Ref. Data
48
, 043104
(2019
).23.
M.-Y.
Song
, H.
Cho
, G. P.
Karwasz
, V.
Kokoouline
, Y.
Nakamura
, J.
Tennyson
, A.
Faure
, N. J.
Mason
, and Y.
Itikawa
, “Cross sections for electron collisions with H2O
,” J. Phys. Chem. Ref. Data
50
, 023103
(2021
).24.
K. R.
Hoffman
, M. S.
Dababneh
, Y.-F.
Hsieh
, W. E.
Kauppila
, V.
Pol
, J. H.
Smart
, and T. S.
Stein
, “Total-cross-section measurements for positrons and electrons colliding with H2, N2, and CO2
,” Phys. Rev. A
25
, 1393
(1982
).25.
C. K.
Kwan
, Y. F.
Hsieh
, W. E.
Kauppila
, S. J.
Smith
, T. S.
Stein
, M. N.
Uddin
, and M. S.
Dababneh
, “e±-CO, e±-CO2 total cross-section measurements
,” Phys. Rev. A
27
, 1328
–1336
(1983
).26.
O.
Sueoka
and S.
Mori
, “Total cross sections for positrons and electrons colliding with N2, CO and CO2 molecules
,” J. Phys. Soc. Jpn.
53
, 2491
(1984
).27.
M.
Kimura
, O.
Sueoka
, A.
Hamada
, M.
Takekawa
, Y.
Itikawa
, H.
Tanaka
, and L.
Boesten
, “Remarks on total and elastic cross sections for electron and positron scattering from CO2
,” J. Chem. Phys.
107
, 6616
–6620
(1997
).28.
C.
Szmytkowski
, A.
Zecca
, G.
Karwasz
, S.
Oss
, K.
Maciag
, B.
Marinkovic
, R. S.
Brusa
, and R.
Grisenti
, “Absolute total cross sections for electron-CO2 scattering at energies from 0.5 to 3000 eV
,” J. Phys. B: At. Mol. Phys.
20
, 5817
(1987
).29.
G.
García
and F.
Manero
, “Total cross sections for electron scattering by CO2 molecules in the energy range 400–5000 eV
,” Phys. Rev. A
53
, 250
–254
(1996
).30.
D.
Field
, N. C.
Jones
, S. L.
Lunt
, and J.-P.
Ziesel
, “Experimental evidence for a virtual state in a cold collision: Electrons and carbon dioxide
,” Phys. Rev. A
64
, 022708
(2001
).31.
J.
Ferch
, C.
Masche
, and W.
Raith
, “Total cross section measurement for e-CO2 scattering down to 0.07 eV
,” J. Phys. B: At. Mol. Phys.
14
, L97
(1981
).32.
S. J.
Buckman
, M. T.
Elford
, and D. S.
Newman
, “Electron scattering from vibrationally excited CO2
,” J. Phys. B: At. Mol. Phys.
20
, 5175
(1987
).33.
A. I.
Lozano
, A.
García-Abenza
, F.
Blanco Ramos
, M.
Hasan
, D. S.
Slaughter
, T.
Weber
, R. P.
McEachran
, R. D.
White
, M. J.
Brunger
, P.
Limão-Vieira
, and G.
García Gómez-Tejedor
, “Electron and positron scattering cross sections from CO2: A comparative study over a broad energy range (0.1–5000 eV)
,” J. Phys. Chem. A
126
, 6032
–6046
(2022
).34.
A. I.
Lozano
, J. C.
Oller
, K.
Krupa
, F.
Ferreira da Silva
, P.
Limão-Vieira
, F.
Blanco
, A.
Muñoz
, R.
Colmenares
, and G.
García
, “Magnetically confined electron beam system for high resolution electron transmission-beam experiments
,” Rev. Sci. Instrum.
89
, 063105
(2018
).35.
G. P.
Karwasz
, R. S.
Brusa
, and A.
Zecca
, “6.1 Total scattering cross sections
,” in Photon and Electron Interactions with Atoms, Molecules and Ions ⋅ Interactions of Photons and Electrons with Molecules
, Landolt–Börnstein—Group I Elementary Particles, Nuclei and Atoms (Springer Materials, Springer-Verlag
, Berlin, Heidelberg
, 2003
), Vol. 17C
.36.
E.
Brüche
, “Wirkungsquerschnitt und molekülbau
,” Ann. Phys.
388
, 1065
–1128
(1927
).37.
C.
Ramsauer
, “Über den Wirkungsquerschnitt der Kohlensäuremoleküle gegenüber langsamen Elektronen
,” Ann. Phys.
388
, 1129
–1135
(1927
).38.
C.
Ramsauer
and R.
Kollath
, “Über den Wirkungsquerschnitt der Nichtedelgasmoleküle gegenüber Elektronen unterhalb 1 Volt
,” Ann. Phys.
396
, 91
–108
(1930
).39.
M.
Kitajima
, A.
Kondo
, N.
Kobayashi
, T.
Ejiri
, T.
Okumura
, K.
Shigemura
, K.
Hosaka
, T.
Odagiri
, and M.
Hoshino
, “High-resolution and high-precision measurements of total cross section for electron scattering from CO2
,” Eur. Phys. J. D
77
, 198
(2023
).40.
G.
García
, C.
Aragón
, and J.
Campos
, “Total cross sections for electron scattering from CO in the energy range 380–5200 eV
,” Phys. Rev. A
42
, 4400
–4402
(1990
).41.
I.
Kanik
, J. C.
Nickel
, and S.
Trajmar
, “Total electron scattering cross section measurements for Kr, O2 and CO
,” J. Phys. B: At., Mol. Opt. Phys.
25
, 2189
(1992
).42.
G.
Karwasz
, R. S.
Brusa
, A.
Gasparoli
, and A.
Zecca
, “Total cross-section measurements for e−-CO scattering: 80–4000 eV
,” Chem. Phys. Lett.
211
, 529
–533
(1993
).43.
S. L.
Xing
, Q. C.
Shi
, X. J.
Chen
, K. Z.
Xu
, B. X.
Yang
, S. L.
Wu
, and R. F.
Feng
, “Absolute total-cross-section measurements for intermediate-energy electron scattering on C2H2 and CO
,” Phys. Rev. A
51
, 414
–417
(1995
).44.
J.
Ferch
, C.
Masche
, W.
Raith
, and L.
Wiemann
, “Electron scattering from vibrationally excited CO2 in the energy range of the 2Πu shape resonance
,” Phys. Rev. A
40
, 5407
–5410
(1989
).45.
M.
Allan
, “Excitation of vibrational levels up to v = 17 in N2 by electron impact in the 0–5 eV region
,” J. Phys. B: At. Mol. Phys.
18
, 4511
(1985
).46.
W. M.
Johnstone
, M. J.
Brunger
, and W. R.
Newell
, “Differential electron scattering from the (010) excited vibrational mode of CO2
,” J. Phys. B: At., Mol. Opt. Phys.
32
, 5779
(1999
).47.
M. A.
Morrison
, “Interpretation of the near-threshold behavior of cross sections for e-CO2 scattering
,” Phys. Rev. A
25
, 1445
–1449
(1982
).48.
H.
Estrada
and W.
Domcke
, “On the virtual-state effect in low-energy electron-CO2 scattering
,” J. Phys. B: At. Mol. Phys.
18
, 4469
(1985
).49.
L. A.
Morgan
, “Virtual states and resonances in electron scattering by CO2
,” Phys. Rev. Lett.
80
, 1873
–1875
(1998
).50.
M.
Allan
, “Vibrational structures in electron–CO2 scattering below the 2Πu shape resonance
,” J. Phys. B: At., Mol. Opt. Phys.
35
, L387
(2002
).51.
Z.
Idziaszek
, G. P.
Karwasz
, and R. S.
Brusa
, “Modified effective range analysis of low energy electron and positron scattering on CO2
,” J. Phys.: Conf. Ser.
115
, 012002
(2008
).52.
K.
Fedus
and G.
Karwasz
, “Virtual states in electron-molecule scattering via modified effective-range theory
,” Phys. Rev. A
109
, 022801
(2024
).53.
T. W.
Shyn
, W. E.
Sharp
, and G. R.
Carignan
, “Angular distribution of electrons elastically scattered from CO2
,” Phys. Rev. A
17
, 1855
–1861
(1978
).54.
D. F.
Register
, H.
Nishimura
, and S.
Trajmar
, “Elastic scattering and vibrational excitation of CO2 by 4, 10, 20 and 50 eV electrons
,” J. Phys. B: At. Mol. Phys.
13
, 1651
–1662
(1980
).55.
K. H.
Kochem
, W.
Sohn
, N.
Hebel
, K.
Jung
, and H.
Ehrhardt
, “Elastic electron scattering and vibrational excitation of CO2 in the threshold energy region
,” J. Phys. B: At. Mol. Phys.
18
, 4455
–4467
(1985
).56.
I.
Kanik
, D. C.
McCollum
, and J. C.
Nickel
, “Absolute elastic differential scattering cross sections for electron impact on carbon dioxide in the intermediate energy region
,” J. Phys. B: At., Mol. Opt. Phys.
22
, 1225
(1989
).57.
H.
Tanaka
, T.
Ishikawa
, T.
Masai
, T.
Sagara
, L.
Boesten
, M.
Takekawa
, Y.
Itikawa
, and M.
Kimura
, “Elastic collisions of low- to intermediate-energy electrons from carbon dioxide: Experimental and theoretical differential cross sections
,” Phys. Rev. A
57
, 1798
–1808
(1998
).58.
J. C.
Gibson
, M. A.
Green
, K. W.
Trantham
, S. J.
Buckman
, P. J. O.
Teubner
, and M. J.
Brunger
, “Elastic electron scattering from CO2
,” J. Phys. B: At., Mol. Opt. Phys.
32
, 213
(1999
).59.
I.
Iga
, M. G. P.
Homem
, K. T.
Mazon
, and M.-T.
Lee
, “Elastic and total cross sections for electron-carbon dioxide collisions in the intermediate energy range
,” J. Phys. B: At., Mol. Opt. Phys.
32
, 4373
(1999
).60.
M.
Takekawa
and Y.
Itikawa
, “Elastic scattering of electrons from carbon dioxide
,” J. Phys. B: At., Mol. Opt. Phys.
29
, 4227
(1996
).61.
T. N.
Rescigno
, D. A.
Byrum
, W. A.
Isaacs
, and C. W.
McCurdy
, “Theoretical studies of low-energy electron-CO2 scattering: Total, elastic, and differential cross sections
,” Phys. Rev. A
60
, 2186
–2193
(1999
).62.
F. A.
Gianturco
and T.
Stoecklin
, “Low-energy electron scattering from CO2 molecules: Elastic channel calculations revisited
,” J. Phys. B: At., Mol. Opt. Phys.
34
, 1695
(2001
).63.
S. J.
Buckman
, M.
Brunger
, and M. T.
Elford
, “6.2 Integral elastic cross sections
,” in Photon and Electron Interactions with Atoms, Molecules and Ions ⋅ Interactions of Photons and Electrons with Molecules
, Landolt–Börnstein—Group I Elementary Particles, Nuclei and Atoms (Springer Materials
, Berlin Heidelberg New York
, 2003
), Vol. 17C
.64.
I.
Iga
, J. C.
Nogueira
, and M.-T.
Lee
, “Elastic scattering of electrons from CO2 in the intermediate energy range
,” J. Phys. B: At. Mol. Phys.
17
, L185
–L189
(1984
).65.
R. D.
Hake
and A. V.
Phelps
, “Momentum-transfer and inelastic-collision cross sections for electrons in O2, CO, and CO2
,” Phys. Rev.
158
, 70
–84
(1967
).66.
J. J.
Lowke
, A. V.
Phelps
, and B. W.
Irwin
, “Predicted electron transport coefficients and operating characteristics of CO2–N2–He laser mixtures
,” J. Appl. Phys.
44
, 4664
–4671
(1973
).67.
M. A.
Morrison
, N. F.
Lane
, and L. A.
Collins
, “Low-energy electron-molecule scattering: Application of coupled-channel theory to e-CO2 collisions
,” Phys. Rev. A
15
, 2186
–2201
(1977
).68.
M. T.
Elford
, S. J.
Buckman
, and M.
Brunger
, “6.3 Elastic momentum transfer cross sections
,” in Photon and Electron Interactions with Atoms, Molecules and Ions ⋅ Interactions of Photons and Electrons with Molecules
, Landolt–Börnstein—Group I Elementary Particles, Nuclei and Atoms (Springer Materials
, Berlin Heidelberg New York
, 2003
), Vol. 17C
.69.
M. A.
Morrison
and N. F.
Lane
, “Theoretical calculation of cross sections for rotational excitation in e-CO2 scattering
,” Phys. Rev. A
16
, 975
(1977
).70.
D.
Thirumalai
, K.
Onda
, and D. G.
Truhlar
, “Electron scattering by CO2: Elastic scattering, rotational excitation, and excitation of the asymmetric stretch at 10 eV impact energy
,” J. Chem. Phys.
74
, 6792
–6805
(1981
).71.
F. A.
Gianturco
and T.
Stoecklin
, “Calculation of rotationally inelastic processes in electron collisions with CO2 smolecules
,” Phys. Rev. A
55
, 1937
(1997
).72.
W.
Vanroose
, C. W.
McCurdy
, and T. N.
Rescigno
, “Interpretation of low-energy electron-CO2 scattering
,” Phys. Rev. A
66
, 032720
(2002
).73.
T.
Antoni
, K.
Jung
, H.
Ehrhardt
, and E.
Chang
, “Rotational branch analysis of the excitation of the fundamental vibrational modes of CO2 by slow electron collisions
,” J. Phys. B: At. Mol. Phys.
19
, 1377
(1986
).74.
M.
Kitajima
, S.
Watanabe
, H.
Tanaka
, M.
Takekawa
, M.
Kimura
, and Y.
Itikawa
, “Differential cross sections for vibrational excitation of CO2 by 1.5–30 eV electrons
,” J. Phys. B: At., Mol. Opt. Phys.
34
, 1929
(2001
).75.
G. B.
Poparic
, M. M.
Ristic
, and D. S.
Belic
, “Electron energy transfer rate coefficients of carbon dioxide
,” J. Phys. Chem. A
114
, 1610
–1615
(2010
).76.
C.
Szmytkowski
, M.
Zubek
, and J.
Drewko
, “Calculation of cross sections for vibrational excitation and de-excitation of CO2 by electronic collisions
,” J. Phys. B: At. Mol. Phys.
11
, L371
(1978
).77.
A.
Kazansky
and L. Y.
Sergeeva
, “On the local theory of resonant inelastic collisions of slow electrons with carbon dioxide
,” J. Phys. B: At., Mol. Opt. Phys.
27
, 3217
(1994
).78.
A.
Kazanskii
, “Calculation of cross sections for inelastic collisions of slow electrons with triatomic molecules: A three-mode model of collisions of electrons with carbon dioxide
,” Opt. Spectrosc.
87
, 840
–846
(1999
).79.
T. N.
Rescigno
, W. A.
Isaacs
, A. E.
Orel
, H.-D.
Meyer
, and C. W.
McCurdy
, “Theoretical study of resonant vibrational excitation of CO2 by electron impact
,” Phys. Rev. A
65
, 032716
(2002
).80.
C. W.
McCurdy
, W. A.
Isaacs
, H.-D.
Meyer
, and T. N.
Rescigno
, “Resonant vibrational excitation of CO2 by electron impact: Nuclear dynamics on the coupled components of the 2Πu resonance
,” Phys. Rev. A
67
, 042708
(2003
).81.
L.
Pietanza
, G.
Colonna
, V.
Laporta
, R.
Celiberto
, G.
D’Ammando
, A.
Laricchiuta
, and M.
Capitelli
, “Influence of electron molecule resonant vibrational collisions over the symmetric mode and direct excitation-dissociation cross sections of CO2 on the electron energy distribution function and dissociation mechanisms in cold pure CO2 plasmas
,” J. Phys. Chem. A
120
, 2614
–2628
(2016
).82.
V.
Laporta
, J.
Tennyson
, and R.
Celiberto
, “Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule
,” Plasma Sources Sci. Technol.
25
, 06LT02
(2016
).83.
M.
Allan
, “Selectivity in the excitation of fermi-coupled vibrations in CO2 by impact of slow electrons
,” Phys. Rev. Lett.
87
, 033201
(2001
).84.
H.
Kawahara
, H.
Kato
, M.
Hoshino
, H.
Tanaka
, L.
Campbell
, and M. J.
Brunger
, “Integral cross sections for electron impact excitation of the 1Σ+u and 1Πu electronic states in CO2
,” J. Phys. B: At., Mol. Opt. Phys.
41
, 085203
(2008
).85.
M. A.
Green
, P. J. O.
Teubner
, L.
Campbell
, M.
Brunger
, M.
Hoshino
, T.
Ishikawa
, M.
Kitajima
, H.
Tanaka
, Y.
Itikawa
, M.
Kimura
, and R. J.
Buenker
, “Absolute differential cross sections for electron impact excitation of the 10.8–11.5 eV energy-loss states of CO2
,” J. Phys. B: At., Mol. Opt. Phys.
35
, 567
(2002
).86.
K. N.
Klump
and E. N.
Lassettre
, “Generalized oscillator strengths for two transitions in CO2 at incident electron energies of 300, 400 and 500 eV
,” J. Electron Spectrosc. Relat. Phenom.
14
, 215
–230
(1978
).87.
S.-X.
Wang
and L.-F.
Zhu
, “Integral cross sections for electron impact excitations of argon and carbon dioxide
,” Chin. Phys. B
31
, 083401
(2022
).88.
C. W.
McCurdy
, Jr. and V.
McKoy
, “Equations of motion method: Inelastic electron scattering for helium and CO2 in the Born approximation
,” J. Chem. Phys.
61
, 2820
–2826
(1974
).89.
L.
Mu-Tao
and V.
McKoy
, “Cross sections for electron impact excitation of the low-lying electron states of CO2
,” J. Phys. B: At. Mol. Phys.
16
, 657
(1983
).90.
C.-H.
Lee
, C.
Winstead
, and V.
McKoy
, “Collisions of low-energy electrons with CO2
,” J. Chem. Phys.
111
, 5056
–5066
(1999
).91.
J. M.
Carr
, P.
Galiatsatos
, J. D.
Gorfinkiel
, A. G.
Harvey
, M.
Lysaght
, D.
Madden
, Z.
Mašín
, M.
Plummer
, J.
Tennyson
, and H. N.
Varambhia
, “UKRmol: A low-energy electron-and positron-molecule scattering suite
,” Eur. Phys. J. D
66
, 58
(2012
).92.
J.
Tennyson
, D. B.
Brown
, J. J.
Munro
, I.
Rozum
, H. N.
Varambhia
, and N.
Vinci
, “Quantemol-N: An expert system for performing electron molecule collision calculations using the R-matrix method
,” J. Phys.: Conf. Ser.
86
, 012001
(2007
).93.
H.-J.
Werner
, P. J.
Knowles
, G.
Knizia
, F. R.
Manby
, and M.
Schütz
, “Molpro: A general-purpose quantum chemistry program package
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
, 242
–253
(2012
).94.
C.
Cosby
and H.
Helm
, “Dissociation rates of diatomic molecules
,” report No. AD-A266 464 WL-TR-93-2004, Wright-Patterson Airforce Base
, Dayton, OH
, 1992
.95.
A.
Bogaerts
, W.
Wang
, A.
Berthelot
, and V.
Guerra
, “Modeling plasma-based CO2 conversion: Crucial role of the dissociation cross section
,” Plasma Sources Sci. Technol.
25
, 055016
(2016
).96.
P. C.
Cosby
, “Electron-impact dissociation of nitrogen
,” J. Chem. Phys.
98
, 9544
(1993
).97.
L. R.
LeClair
and J. W.
McConkey
, “On O(1S) and CO(a 3Π) production from electron impact dissociation of CO2
,” J. Phys. B: At., Mol. Opt. Phys.
27
, 4039
(1994
).98.
H. C.
Straub
, B. G.
Lindsay
, K. A.
Smith
, and R. F.
Stebbings
, “Absolute partial cross sections for electron-impact ionization of CO2 from threshold to 1000 eV
,” J. Chem. Phys.
105
, 4015
–4022
(1996
).99.
C.
Montesano
, T. P.
Salden
, L. M.
Martini
, G.
Dilecce
, and P.
Tosi
, “CO2 reduction by nanosecond-plasma discharges: Revealing the dissociation’s time scale and the importance of pulse sequence
,” J. Phys. Chem. C
127
, 10045
–10050
(2023
).100.
R. K.
Asundi
, J. D.
Craggs
, and M. V.
Kurepa
, “Electron attachment and ionization in oxygen, carbon monoxide and carbon dioxide
,” Proc. Phys. Soc.
82
, 967
(1963
).101.
D.
Rapp
and P.
Englander-Golden
, “Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization
,” J. Chem. Phys.
43
, 1464
–1479
(1965
).102.
J. E.
Hudson
, C.
Vallance
, and P. W.
Harland
, “Absolute electron impact ionization cross-sections for CO, CO2, OCS and CS2
,” J. Phys. B: At., Mol. Opt. Phys.
37
, 445
(2003
).103.
B.
Adamczyk
, A. J. H.
Boerboom
, and M.
Łukasiewicz
, “Partial ionization cross sections of carbon dioxide by electrons (25–600 eV)
,” Int. J. Mass Spectrom. Ion Phys.
9
, 407
–412
(1972
).104.
B.
Adamczyk
, K.
Bederski
, and L.
Wójcik
, “Mass spectrometric investigation of dissociative ionization of toxic gases by electrons at 20–1000 eV
,” Biol. Mass Spectrom.
16
, 415
–417
(1988
).105.
A.
Crowe
and J. W.
McConkey
, “Dissociative ionization by electron impact. III. O+, CO+ and C+ from CO2
,” J. Phys. B: At. Mol. Phys.
7
, 349
(1974
).106.
T. D.
Märk
and E.
Hille
, “Cross section for single and double ionization of carbon dioxide by electron impact from threshold up to 180 eV
,” J. Chem. Phys.
69
, 2492
–2496
(1978
).107.
C.
Tian
and C. R.
Vidal
, “Electron impact dissociative ionization of CO2: Measurements with a focusing time-of-flight mass spectrometer
,” J. Chem. Phys.
108
, 927
–936
(1998
).108.
R. S.
Freund
, R. C.
Wetzel
, and R. J.
Shul
, “Measurements of electron-impact-ionization cross sections of N2, CO, CO2, CS, S2, CS2, and metastable N2
,” Phys. Rev. A
41
, 5861
–5868
(1990
).109.
O. J.
Orient
and S. K.
Srivastava
, “Production of O− from CO2 by dissociative electron attachment
,” Chem. Phys. Lett.
96
, 681
–684
(1983
).110.
S. J.
King
and S. D.
Price
, “Electron ionization of CO2
,” Int. J. Mass Spectrom.
272
, 154
–164
(2008
).111.
B. G.
Lindsay
and M. A.
Mangan
, “Interactions of photons and electrons with molecules ⋅ 5.1 Ionization
,” in Photon and Electron Interactions with Atoms, Molecules and Ions ⋅ Interactions of Photons and Electrons with Molecules
, Landolt–Börnstein—Group I Elementary Particles, Nuclei and Atoms (Springer Materials, Springer-Verlag
, Berlin, Heidelberg
, 2003
), Vol. 17C
.112.
O. J.
Orient
and S. K.
Strivastava
, “Electron impact ionisation of H2O, CO, CO2 and CH4
,” J. Phys. B: At. Mol. Phys.
20
, 3923
(1987
).113.
G. P.
Karwasz
, P.
Możejko
, and M.-Y.
Song
, “Electron-impact ionization of fluoromethanes—Review of experiments and binary-encounter models
,” Int. J. Mass Spectrom.
365–366
, 232
–237
(2014
).114.
P.
Verma
and R. J.
Bartlett
, “Increasing the applicability of density functional theory. IV. Consequences of ionization-potential improved exchange-correlation potentials
,” J. Chem. Phys.
140
, 18A534
(2014
).115.
E.
Krishnakumar
, “A pulsed crossed beam apparatus for measurement of electron impact partial ionisation cross-sections: Results on CO2
,” Int. J. Mass Spectrom. Ion Processes
97
, 283
–294
(1990
).116.
J. W.
McConkey
, D. J.
Burns
, and J. M.
Woolsey
, “Absolute cross sections for ionization and excitation of CO2 by electron impact
,” J. Phys. B: At. Mol. Phys.
1
, 71
(1968
).117.
J. M.
Ajello
, “Emission cross sections of CO2 by electron impact in the interval 1260–4500 Å. II
,” J. Chem. Phys.
55
, 3169
–3177
(1971
).118.
S.
Tsurubuchi
and T.
Iwai
, “Simultaneous ionization and excitation of CO2 by electron-impact
,” J. Phys. Soc. Jpn.
37
, 1077
–1081
(1974
).119.
C.
Tian
and C. R.
Vidal
, “Single to quadruple ionization of CO2 due to electron impact
,” Phys. Rev. A
58
, 3783
–3795
(1998
).120.
V.
Sharma
, B.
Bapat
, J.
Mondal
, M.
Hochlaf
, K.
Giri
, and N. N.
Sathyamurthy
, “Dissociative double ionization of CO2: Dynamics, energy levels, and lifetime
,” J. Phys. Chem. A
111
, 10205
–10211
(2007
).121.
P.
Bhatt
, R.
Singh
, N.
Yadav
, and R.
Shanker
, “Dissociative-ionization cross sections for 12-keV-electron impact on CO2
,” Phys. Rev. A
84
, 042701
(2011
).122.
P.
Bhatt
, R.
Singh
, N.
Yadav
, and R.
Shanker
, “Formation, structure, and dissociation dynamics of CO2q+ (q ≤ 3) ions due to impact of 12-keV electrons
,” Phys. Rev. A
85
, 042707
(2012
).123.
E.
Wang
, X.
Shan
, Y.
Shi
, Y.
Tang
, and X.
Chen
, “Momentum imaging spectrometer for molecular fragmentation dynamics induced by pulsed electron beam
,” Rev. Sci. Instrum.
84
, 123110
(2013
).124.
X.
Wang
, Y.
Zhang
, D.
Lu
, G. C.
Lu
, B.
Wei
, B. H.
Zhang
, Y. J.
Tang
, R.
Hutton
, and Y.
Zou
, “Fragmentation CO22+ of in collisions with low-energy electrons
,” Phys. Rev. A
90
, 062705
(2014
).125.
D.
Spence
and G. J.
Schulz
, “Cross sections for production of O2− and C− by dissociative electron attachment in CO2: An observation of the Renner-Teller effect
,” J. Chem. Phys.
60
, 216
–220
(1974
).126.
P.
Nag
and D.
Nandi
, “Dissociation dynamics in the dissociative electron attachment to carbon dioxide
,” Phys. Rev. A
91
, 052705
(2015
).127.
D.
Ascenzi
, C.
Romanzin
, A.
Lopes
, P.
Tosi
, J.
Žabka
, M.
Polášek
, C. J.
Shaffer
, and C.
Alcaraz
, “State-selected reactivity of carbon dioxide cations (CO2+) with methane
,” Front. Chem.
7
, 537
(2019
).128.
L.
Gkouvelis
, J.-C.
Gérard
, B.
Ritter
, B.
Hubert
, N. M.
Schneider
, and S. K.
Jain
, “The O(1S) 297.2-nm dayglow emission: A tracer of CO2 density variations in the Martian lower thermosphere
,” J. Geophys. Res.: Planets
123
, 3119
–3132
(2018
).129.
Q.
Zhang
, H.
Gu
, J.
Cui
, Y.-M.
Cheng
, Z.-G.
He
, J.-H.
Zhong
, F.
He
, and Y.
Wei
, “Atomic oxygen escape on Mars driven by electron impact excitation and ionization
,” Astron. J.
159
, 54
(2020
).130.
K.
Seiersen
, A.
Al-Khalili
, O.
Heber
, M. J.
Jensen
, I. B.
Nielsen
, H. B.
Pedersen
, C. P.
Safvan
, and L. H.
Andersen
, “Dissociative recombination of the cation and dication of CO2
,” Phys. Rev. A
68
, 022708
(2003
).131.
A. A.
Viggiano
, A.
Ehlerding
, F.
Hellberg
, R. D.
Thomas
, V.
Zhaunerchyk
, W. D.
Geppert
, H.
Montaigne
, M.
Larsson
, M.
Kaminska
, and F.
Österdahl
, “Rate constants and branching ratios for the dissociative recombination of CO2+
,” J. Chem. Phys.
122
, 226101
(2005
).132.
C. S.
Weller
and M. A.
Biondi
, “Measurements of dissociative recombination of ions with electrons
,” Phys. Rev. Lett.
19
, 59
–61
(1967
).133.
R. A.
Gutcheck
and E. C.
Zipf
, “Excitation of the CO fourth positive system by the dissociative recombination of CO2+ ions
,” J. Geophys. Res.
78
, 5429
–5436
(1973
).134.
M.
Geoghegan
, N. G.
Adams
, and D.
Smith
, “Determination of the electron-ion dissociative recombination coefficients for several molecular ions at 300 K
,” J. Phys. B: At., Mol. Opt. Phys.
24
, 2589
(1991
).135.
T.
Gougousi
, M. F.
Golde
, and R.
Johnsen
, “Electron-ion recombination rate coefficient measurements in a flowing afterglow plasma
,” Chem. Phys. Lett.
265
, 399
–403
(1997
).136.
A.
Müller
, E.
Salzborn
, R.
Frodl
, R.
Becker
, and H.
Klein
, “Ionisation of CO2+ ions by electron impact
,” J. Phys. B: At. Mol. Phys.
13
, L221
(1980
).137.
E. M.
Bahati
, J. J.
Jureta
, D. S.
Belic
, S.
Rachafi
, and P.
Defrance
, “Electron impact ionization and dissociation of CO2+ to C+ and O+
,” J. Phys. B: At., Mol. Opt. Phys.
34
, 1757
(2001
).138.
H.
Deutsch
, K.
Becker
, P.
Defrance
, U.
Onthong
, R.
Parajuli
, M.
Probst
, S.
Matt
, and T. D.
Märk
, “Calculated absolute cross section for the electron-impact ionization of CO2+ and N2+
,” J. Phys. B: At. Mol. Opt. Phys.
35
, L65
(2002
).139.
Y. K.
Kim
, K. K.
Irikura
, and M. A.
Ali
, “Electron-impact total ionization cross sections of molecular ions
,” J. Res. Natl. Inst. Stand. Technol.
105
, 285
(2000
).You do not currently have access to this content.