The far infrared absorption spectra of D216O, D217O, and D218O are analyzed with improved accuracy and sensitivity in the 50–720 cm−1 range corresponding to the rotational band. Four room-temperature absorption spectra of highly deuterated water vapor were recorded at the SOLEIL synchrotron by high-resolution Fourier transform spectroscopy. Line centers are reported with a typical accuracy of 5 × 10−5 cm−1 for well isolated lines. The combined line list of about 9700 water lines was assigned to about 10 400 transitions of the nine stable water isotopologues (H2XO, HDXO, D2XO, with X = 16, 17, and 18). A total of 2885 transitions of eight bands involving the first five vibrational states were assigned to D216O. Among them, 2057 are newly reported. The obtained set of transition frequencies was merged with literature data to generate a new set of empirical energy levels for the first five vibrational states of D216O. A total of 1089 transitions of the (000)–(000) and (010)–(010) bands were measured for D217O. They were merged with literature sources to derive 724 empirical term values of seven vibrational states, up to 8088 cm−1. 348 D217O levels are newly determined. A set of 1150 transitions belonging to the (000)–(000) and (010)–(010) bands was measured for D218O. 3451 empirical energies of rotation–vibration levels up to 9222 cm−1 were retrieved using our observations and literature sources. The extension and accuracy of the derived empirical energy levels allow us to recommend new line lists with empirically corrected line positions for D216O, D217O, and D218O.

1.
I. E.
Gordon
,
L. S.
Rothman
,
R. J.
Hargreaves
,
R.
Hashemi
,
E. V.
Karlovets
,
F. M.
Skinner
et al, “
The HITRAN2020 molecular spectroscopic database
,”
J. Quant. Spectrosc. Radiat. Transfer
277
,
107949
(
2022
).
2.
T.
Delahaye
,
R.
Armante
,
N. A.
Scott
,
N.
Jacquinet-Husson
,
A.
Chédin
,
L.
Crépeau
et al, “
The 2020 edition of the GEISA spectroscopic database
,”
J. Mol. Spectrosc.
380
,
111510
(
2021
).
4.
S. S.
Nabiev
,
V. L.
Vaks
,
E. G.
Domracheva
,
L. A.
Palkina
,
S. I.
Pripolzin
,
E. A.
Sobakinskaya
, and
M. B.
Chernyaeva
, “
Express analysis of water isotopomers in the atmosphere with the use of nonstationary subterahertz and terahertz spectroscopy methods
,”
Atmos. Oceanic Opt.
24
,
402
(
2011
).
5.
A.
Coutens
,
C.
Vastel
,
S.
Cazaux
,
S.
Bottinelli
,
E.
Caux
,
C.
Ceccarelli
et al, “
Heavy water stratification in a low-mass protostar
,”
Astron. Astrophys.
553
,
A75
(
2013
).
6.
H. M.
Butner
,
S. B.
Charnley
,
C.
Ceccarelli
,
S. D.
Rodgers
,
J. R.
Pardo
,
B.
Parise
et al, “
Discovery of interstellar heavy water
,”
Astrophys. J.
659
,
L137
(
2007
).
7.
S. S.
Jensen
,
J. K.
Jørgensen
,
L. E.
Kristensen
,
A.
Coutens
,
E. F.
van Dishoeck
,
K.
Furuya
et al, “
ALMA observations of doubly deuterated water: Inheritance of water from the prestellar environment
,”
Astron. Astrophys.
650
,
A172
(
2021
).
8.
A.
Coutens
,
J. K.
Jørgensen
,
M. V.
Persson
,
E. F.
Van Dishoeck
,
C.
Vastel
, and
V.
Taquet
, “
High D2O/HDO ratio in the inner regions of the low-mass protostar NGC 1333 IRAS2A
,”
Astrophys. J.
792
,
L5
(
2014
).
9.
J.
Tennyson
,
P. F.
Bernath
,
L. R.
Brown
,
A.
Campargue
,
A. G.
Császár
,
L.
Daumont
et al, “
IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part IV: Energy levels and transition wavenumbers for D216O, D217O, and D218O
,”
J. Quant. Spectrosc. Radiat. Transfer
142
,
93
(
2014
).
10.
H.
Partridge
and
D. W.
Schwenke
, “
The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data
,”
J. Chem. Phys.
106
,
4618
(
1997
).
11.
D. W.
Schwenke
and
H.
Partridge
, “
Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities
,”
J. Chem. Phys.
113
,
6592
(
2000
).
12.
F.
Sizov
and
A.
Rogalski
, “
THz detectors
,”
Prog. Quantum Electron.
34
,
278
(
2010
).
13.
L.
Consolino
,
S.
Bartalini
, and
P.
De Natale
, “
Terahertz frequency metrology for spectroscopic applications: A review
,”
J. Infrared, Millimeter, Terahertz Waves
38
,
1289
(
2017
).
14.
A. O.
Koroleva
,
T. A.
Odintsova
,
M. Y.
Tretyakov
,
O.
Pirali
, and
A.
Campargue
, “
The foreign-continuum absorption of water vapour in the far-infrared (50–500 cm−1)
,”
J. Quant. Spectrosc. Radiat. Transfer
261
,
107486
(
2021
).
15.
M.
Toureille
,
A. O.
Koroleva
,
S. N.
Mikhailenko
,
O.
Pirali
, and
A.
Campargue
, “
Water vapor absorption spectroscopy and validation tests of databases in the far-infrared (50–720 cm−1). Part 1: Natural water
,”
J. Quant. Spectrosc. Radiat. Transfer
291
,
108326
(
2022
).
16.
S. N.
Mikhailenko
,
S.
Béguier
,
T. A.
Odintsova
,
M. Y.
Tretyakov
,
O.
Pirali
, and
A.
Campargue
, “
The far-infrared spectrum of 18O enriched water vapour (40–700 cm−1)
,”
J. Quant. Spectrosc. Radiat. Transfer
253
,
107105
(
2020
).
17.
E. V.
Karlovets
,
S. N.
Mikhailenko
,
A. O.
Koroleva
, and
A.
Campargue
, “
Water vapor absorption spectroscopy and validation tests of databases in the far-infrared (50–720 cm−1). Part 2: H217O and HD17O
,”
J. Quant. Spectrosc. Radiat. Transfer
314
,
108829
(
2024
).
18.
R. A.
Toth
,
L. R.
Brown
, and
C.
Plymate
, “
Self-broadened widths and frequency shifts of water vapor lines between 590 and 2400 cm−1
,”
J. Quant. Spectrosc. Radiat. Transfer
59
,
529
(
1998
).
19.
V. B.
Podobedov
,
D. F.
Plusquellic
, and
G. T.
Fraser
, “
THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1.4 kPa
,”
J. Quant. Spectrosc. Radiat. Transfer
87
,
377
(
2004
).
20.
R.
Tóbiás
,
T.
Furtenbacher
,
I.
Simkó
,
A. G.
Császár
,
M. L.
Diouf
,
F. M. J.
Cozijn
et al, “
Spectroscopic-network-assisted precision spectroscopy and its application to water
,”
Nat. Commun.
11
,
1708
(
2020
).
21.
J.
Verhoeven
,
H.
Bluyssen
, and
A.
Dymanus
, “
Hyperfine structure of HDO and D2O by beam maser spectroscopy
,”
Phys. Lett. A
26
,
424
(
1968
).
22.
G.
Cazzoli
,
L.
Dore
,
C.
Puzzarini
, and
J.
Gauss
, “
The hyperfine structure in the rotational spectra of D2O: Lamb-dip measurements and quantum-chemical calculations
,”
Mol. Phys.
108
,
2335
(
2010
).
23.
G.
Cazzoli
and
C.
Puzzarini
, “
Sub-Doppler resolution in the THz frequency domain: 1 kHz accuracy at 1 THz by exploiting the Lamb-dip technique
,”
J. Phys. Chem. A
117
,
13759
(
2013
).
24.
C.
Puzzarini
,
G.
Cazzoli
,
M. E.
Harding
,
J.
Vazquez
, and
J.
Gauss
, “
The hyperfine structure in the rotational spectra of D217O and HD17O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen
,”
J. Chem. Phys.
142
,
124308
(
2015
).
25.
J.
Kaupinen
,
T.
Karkkainen
, and
E.
Kyro
, “
High-resolution spectrum of water vapor between 30 and 720 cm−1
,”
J. Mol. Spectrosc.
71
,
15
(
1978
).
26.
J. W. C.
Johns
, “
High-resolution far-infrared (20–350-cm−1) spectra of several isotopic species of H2O
,”
J. Opt. Soc. Am. B
2
,
1340
(
1985
).
27.
R.
Paso
and
V. M.
Horneman
, “
High-resolution rotational absorption spectra of H216O, HD16O, and D216O between 110 and 500 cm−1
,”
J. Opt. Soc. Am. B
12
,
1813
(
1995
).
28.
R. A.
Toth
, “
HDO and D2O low pressure, long path spectra in the 600–3100 cm−1 region. I. HDO line positions and strengths
,”
J. Mol. Spectrosc.
195
,
73
(
1999
).
29.
A.
Janca
,
K.
Tereszchuk
,
P. F.
Bernath
,
N. F.
Zobov
,
S. V.
Shirin
,
O. L.
Polyansky
, and
J.
Tennyson
, “
Emission spectrum of hot HDO below 4000 cm−1
,”
J. Mol. Spectrosc.
219
,
132
(
2003
).
30.
C.
Puzzarini
,
G.
Cazzoli
, and
J.
Gauss
, “
The rotational spectra of HD17O and D217O: Experiment and quantum-chemical calculations
,”
J. Chem. Phys.
137
,
154311
(
2012
).
31.
G. C.
Mellau
,
S. N.
Mikhailenko
, and
V. G.
Tyuterev
, “
Hot water emission spectra: Rotational energy levels of the (000) and (010) states of HD17O
,”
J. Mol. Spectrosc.
308–309
,
6
(
2015
).
32.
S. S.
Yu
,
J. C.
Pearson
,
B. J.
Drouin
,
C. E.
Miller
,
K.
Kobayashi
, and
F.
Matsushima
, “
Terahertz spectroscopy of ground state HD18O
,”
J. Mol. Spectrosc.
328
,
27
(
2016
).
33.
F.
Matsushima
,
M.
Matsunaga
,
G. Y.
Qian
,
Y.
Ohtaki
,
R. L.
Wang
, and
K.
Takagi
, “
Frequency measurement of pure rotational transitions of D2O from 0.5 to 5 THz
,”
J. Mol. Spectrosc.
206
,
41
(
2001
).
34.
E. A.
Michael
,
C. J.
Keoshian
,
S. K.
Anderson
, and
R. J.
Saykally
, “
Rotational transitions in excited vibrational states of D2O
,”
J. Mol. Spectrosc.
208
,
219
(
2001
).
35.
S.
Brünken
,
H. S. P.
Müller
,
C.
Endres
,
F.
Lewen
,
T.
Giesen
,
B.
Drouin
,
J. C.
Pearson
, and
H.
Mäder
, “
High resolution rotational spectroscopy on D2O up to 2.7 THz in its ground and first excited vibrational bending states
,”
Phys. Chem. Chem. Phys.
9
,
2103
(
2007
).
36.
G.
Mellau
,
S. N.
Mikhailenko
,
E. N.
Starikova
,
S. A.
Tashkun
,
H.
Over
, and
V. G.
Tyuterev
, “
Rotational levels of the (000) and (010) states of D216O from hot emission spectra in the 320–860 cm−1 region
,”
J. Mol. Spectrosc.
224
,
32
(
2004
).
37.
S. N.
Mikhailenko
,
G. C.
Mellau
,
E. N.
Starikova
,
S. A.
Tashkun
, and
V. G.
Tyuterev
, “
Analysis of the first triad of interacting states (020), (100), and (001) of D216O from hot emission spectra
,”
J. Mol. Spectrosc.
233
,
32
(
2005
).
38.
N. F.
Zobov
,
R. I.
Ovsannikov
,
S. V.
Shirin
,
O. L.
Polyansky
,
J.
Tennyson
,
A.
Janka
, and
P. F.
Bernath
, “
Infrared emission spectrum of hot D2O
,”
J. Mol. Spectrosc.
240
,
112
(
2006
).
39.
J. W.
Fleming
and
M. J.
Gibson
, “
Far-infrared absorption spectra of water vapor H216O and isotopic modifications
,”
J. Mol. Spectrosc.
62
,
326
(
1976
).
40.
C. I.
Beard
and
D. R.
Bianco
, “
Two D2O microwave absorption lines
,”
J. Chem. Phys.
20
,
1488
(
1952
).
41.
C. K.
Jen
,
D. R.
Bianco
, and
J. T.
Massey
, “
Some heavy water rotational absorption lines
,”
J. Chem. Phys.
21
,
520
(
1953
).
42.
D. W.
Posener
and
M. W. P.
Strandberg
, “
Centrifugal distortion in the asymmetric top molecules. III. H2O, D2O, and HDO
,”
Phys. Rev.
95
,
374
(
1954
).
43.
G.
Erlandsson
and
J.
Cox
, “
Millimeter-wave lines of heavy water
,”
J. Chem. Phys.
25
,
778
(
1956
).
44.
D. A.
Stephenson
and
R. G.
Strauch
, “
Water vapor spectrum near 600 GHz
,”
J. Mol. Spectrosc.
35
,
494
(
1970
).
45.
W. S.
Benedict
,
S. A.
Clough
,
L.
Frenkel
, and
T. E.
Sullivan
, “
Microwave spectrum and rotational constants for the ground state of D2O
,”
J. Chem. Phys.
53
,
2565
(
1970
).
46.
G.
Steenbeckeliers
and
J.
Bellet
, “
Spectre de rotation de l’eau lourde
,”
C. R. Acad. Sci., Ser. B
270
,
1039
(
1970
).
47.
J.
Bellet
and
G.
Steenbeckeliers
, “
Calcul des constantes rotationnelles des molecules H2O, HDO et D2O dans leurs etats fondamentaux de vibration
,”
C. R. Acad. Sci., Ser. B
271
,
1208
(
1970
).
48.
G.
Steenbeckeliers
and
J.
Bellet
, “
Application of Watson’s centrifugal distortion theory to water and light asymmetric tops. General methods. Analysis of the ground state and the ν2 state of D2O16
,”
J. Mol. Spectrosc.
45
,
10
(
1973
).
49.
J. K.
Messer
,
F. C.
De Lucia
, and
P.
Helminger
, “
Submillimeter spectroscopy of the major isotopes of water
,”
J. Mol. Spectrosc.
105
,
139
(
1984
).
50.
O. I.
Baskakov
,
V. A.
Alekseev
,
E. A.
Alekseev
, and
B. I.
Polevoi
, “
New submillimeter lines of water and its isotopes
,”
Opt. Spectrosc.
63
(
5
),
600
(
1987
).
51.
R. A.
Toth
, “
D216O and D218O transition frequencies and strengths in the ν2 bands
,”
J. Mol. Spectrosc.
162
,
41
(
1993
).
52.
R. A.
Toth
, “
HDO and D2O low pressure, long path spectra in the 600–3100 cm−1 region. II. D2O line positions and strengths
,”
J. Mol. Spectrosc.
195
,
98
(
1999
).
53.
N.
Papineau
,
J. M.
Flaud
,
C.
Camy-Peyret
, and
G.
Guelachvili
, “
The 2ν2, ν1 and ν3 bands of D216O. The ground state (000) and the triad of interacting states {(020), (100), (001)}
,”
J. Mol. Spectrosc.
87
,
219
(
1981
).
54.
C.
Camy-Peyret
,
J. M.
Flaud
,
A.
Mahmoudi
,
G.
Guelachvili
, and
J. W. C.
Johns
, “
Line positions and intensities in the ν2 band of D2O improved pumped D2O laser frequencies
,”
Int. J. Infrared Millimeter Waves
6
,
199
(
1985
).
55.
C. P.
Rinsland
,
M. A. H.
Smith
,
V.
Malathy Devi
, and
D. C.
Benner
, “
Measurements of Lorentz-broadening coefficients and pressure-induced line shift coefficients in the ν2 band of D216O
,”
J. Mol. Spectrosc.
150
,
173
(
1991
).
56.
C. P.
Rinsland
,
M. A. H.
Smith
,
V. M.
Devi
, and
D. C.
Benner
, “
Measurements of Lorentz-broadening coefficients and pressure-induced line-shift coefficients in the ν1 band of HD16O and the ν3 band of D216O
,”
J. Mol. Spectrosc.
156
,
507
(
1992
).
57.
R. A.
Toth
, NSO Spectrum 970325.2.
58.
A. G.
Császár
and
T.
Furtenbacher
, “
Spectroscopic networks
,”
J. Mol. Spectrosc.
266
,
99
(
2011
).
59.
T.
Furtenbacher
and
A. G.
Császár
, “
The role of intensities in determining characteristics of spectroscopic networks
,”
J. Mol. Struct.
1009
,
123
(
2012
).
60.
A. A.
Kyuberis
,
N. F.
Zobov
,
O. V.
Naumenko
,
B. A.
Voronin
,
O. L.
Polyansky
,
L.
Lodi
et al, “
Room temperature line lists for deuterated water
,”
J. Quant. Spectrosc. Radiat. Transfer
203
,
175
(
2017
).
61.
S. V.
Shirin
,
N. F.
Zobov
, and
O. L.
Polyansky
, “
Theoretical line list of D216O up to 16,000 cm−1 with an accuracy close to experimental
,”
J. Quant. Spectrosc. Radiat. Transfer
109
,
549
(
2008
).
62.
D. W.
Schwenke
, “
Variational calculations of rovibrational energy levels and transition intensities for tetratomic molecules
,”
J. Phys. Chem.
100
,
2867
(
1996
).
63.
D. W.
Schwenke
, “
Erratum to ‘Variational calculations of rovibrational energy levels and transition intensities for tetratomic molecules’
,”
J. Phys. Chem.
100
,
18884
(
1996
).
64.
J.
Bellet
,
W. J.
Lafferty
, and
G.
Steenbeckeliers
, “
Microwave spectra of D217O and D218O
,”
J. Mol. Spectrosc.
47
,
388
(
1973
).
65.
S. N.
Mikhailenko
,
O. V.
Naumenko
,
A. V.
Nikitin
,
I. A.
Vasilenko
,
A.-W.
Liu
,
K.-F.
Song
et al, “
Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm−1
,”
J. Quant. Spectrosc. Radiat. Transfer
113
,
653
(
2012
).
66.
A.-W.
Liu
,
O. V.
Naumenko
,
S.
Kassi
, and
A.
Campargue
, “
CW-Cavity Ring Down Spectroscopy of deuterated water in the 1.58 μm atmospheric transparency window
,”
J. Quant. Spectrosc. Radiat. Transfer
138
,
97
(
2014
).
67.
G.
Di Lonardo
and
L.
Fusina
, “
The ν2 band of D218O
,”
J. Mol. Spectrosc.
135
,
250
(
1989
).
68.
W. F.
Wang
,
T. L.
Tan
,
B. L.
Tan
, and
P. P.
Ong
, “
The ν2 bands of HD18O and D218O: Rovibrational constants and additional transitions
,”
J. Mol. Spectrosc.
176
,
226
(
1996
).
69.
R. A.
Toth
, “
Measurements of line positions and strengths of HD18O and D218O in the 2500–4280 cm−1 region
,”
J. Mol. Struct.
742
,
49
(
2005
).
70.
H.-Y.
Ni
,
A.-W.
Liu
,
K.-F.
Song
,
S.-M.
Hu
,
O. V.
Naumenko
,
T. V.
Kruglova
, and
S. A.
Tashkun
, “
High-resolution spectroscopy of the triple-substituted isotopologue of water molecule D218O: The first triad
,”
Mol. Phys.
106
,
1793
(
2008
).
71.
S. N.
Mikhailenko
,
S. A.
Tashkun
,
L.
Daumont
,
A.
Jenouvrier
,
M.
Carleer
,
S.
Fally
, and
A. C.
Vandaele
, “
Line positions and energy levels of the 18O substitutions from the HDO/D2O spectra between 5600 and 8800 cm−1
,”
J. Quant. Spectrosc. Radiat. Transfer
111
,
2185
(
2010
).
72.
A.-W.
Liu
,
K.-F.
Song
,
H.-Y.
Ni
,
S.-M.
Hu
,
O. V.
Naumenko
,
I. A.
Vasilenko
, and
S. N.
Mikhailenko
, “
(000) and (010) energy levels of the HD18O and molecules from analysis of their ν2 bands
,”
J. Mol. Spectrosc.
265
,
26
(
2011
).
73.
M. J.
Down
,
J.
Tennyson
,
J.
Orphal
,
P.
Chelin
, and
A. A.
Ruth
, “
Analysis of an 18O and D enhanced water spectrum and new assignments for HD18O and D218O in the near-infrared region (6000–7000 cm−1) using newly calculated variational line lists
,”
J. Mol. Spectrosc.
282
,
1
(
2012
).

Supplementary Material

You do not currently have access to this content.