We review recent determinations of the Boltzmann constant kB and the differences TT90 that used cylindrical acoustic gas thermometry (c-AGT). These determinations measured the acoustic resonance frequencies of argon gas enclosed by metal-walled, cylindrical cavities. (Here, T is the thermodynamic temperature and T90 is the temperature measured on the International Temperature Scale of 1990, ITS-90.) In the range 234–303 K, the standard uncertainty of c-AGT ranges from 1.9 × 10−6 T to 2.6 × 10−6 T. This uncertainty is much smaller than the errors in ITS-90; therefore, c-AGT can help improve ITS-90. Moreover, we are extending c-AGT up to 1358 K. With increasing temperatures, c-AGT becomes advantageous relative to AGT based on quasi-spherical cavities because long cylindrical cavities (1) naturally fit into cylindrical heat pipes or multi-shelled thermostats; (2) provide the immersion required by transfer temperature standards, such as long-stemmed platinum resistance thermometers; and (3) have more useful, low-frequency acoustic resonances. In preparation for high-temperature c-AGT, we identified suitable materials for fabricating cylindrical cavities and we developed techniques for measuring acoustic resonance frequencies using sources and detectors outside the high-temperature thermostat. We also considered alternative test gases and optimal dimensions of cavities.

1.
R. L.
Rusby
,
R. P.
Hudson
,
M.
Durieux
,
J. F.
Schooley
,
P. P. M.
Steur
, and
C. A.
Swenson
, “
Thermodynamic basis of the ITS-90
,”
Metrologia
28
,
9
(
1991
).
2.
T. J.
Quinn
,
T. R. D.
Chandler
, and
A. R.
Colclough
, “
A new determination of the gas constant by an acoustical method
,”
Nature
250
,
218
(
1974
).
3.
M. R.
Moldover
,
J. B.
Mehl
, and
M.
Greenspan
, “
Gas‐filled spherical resonators: Theory and experiment
,”
J. Acoust. Soc. Am.
79
,
253
(
1986
).
4.
K. A.
Gillis
,
M. R.
Moldover
, and
A. R. H.
Goodwin
, “
Accurate acoustic measurements in gases under difficult conditions
,”
Rev. Sci. Instrum.
62
,
2213
(
1991
).
5.
I. M.
Mills
,
P. J.
Mohr
,
T. J.
Quinn
,
B. N.
Taylor
, and
E. R.
Williams
, “
Redefinition of the kilogram, ampere, kelvin and mole: A proposed approach to implementing CIPM recommendation 1 (CI-2005)
,”
Metrologia
43
,
227
(
2006
).
6.
J.
Fischer
et al, “
The Boltzmann project
,”
Metrologia
55
,
R1
(
2018
).
7.
M. R.
Moldover
,
J. P. M.
Trusler
,
T. J.
Edwards
,
J. B.
Mehl
, and
R. S.
Davis
, “
Measurement of the universal gas constant R using a spherical acoustic resonator
,”
Phys. Rev. Lett.
60
,
249
(
1988
).
8.
L.
Pitre
,
C.
Guianvarc’h
,
F.
Sparasci
,
A.
Guillou
,
D.
Truong
,
Y.
Hermier
, and
M. E.
Himbert
, “
An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM
,”
C. R. Phys
10
,
835
(
2009
).
9.
M. R.
Moldover
,
S. J.
Boyes
,
C. W.
Meyer
, and
A. R. H.
Goodwin
, “
Thermodynamic temperatures of the triple points of mercury and gallium and in the interval 217 K to 303 K
,”
J. Res. Natl. Inst. Stand. Technol.
104
,
11
(
1999
).
10.
G. F.
Strouse
,
D. R.
Defibaugh
,
M. R.
Moldover
, and
D. C.
Ripple
, “
Progress in primary acoustic thermometry at NIST: 273 K to 505 K
,”
AIP Conf. Proc.
684
,
31
(
2003
).
11.
D. C.
Ripple
,
G. F.
Strouse
, and
M. R.
Moldover
, “
Acoustic thermometry results from 271 to 552 K
,”
Int. J. Thermophys.
28
,
1789
(
2007
).
12.
R.
Underwood
,
M.
de Podesta
,
G.
Sutton
,
L.
Stanger
,
R.
Rusby
,
P.
Harris
,
P.
Morantz
, and
G.
Machin
, “
Further estimates of (TT90) close to the triple point of water
,”
Int. J. Thermophys.
38
,
44
(
2017
).
13.
M. B.
Ewing
and
J. P. M.
Trusler
, “
Primary acoustic thermometry between T = 90 K and T = 300 K
,”
J. Chem. Thermodyn.
32
,
1229
(
2000
).
14.
G.
Benedetto
,
R. M.
Gavioso
,
R.
Spagnolo
,
P.
Marcarino
, and
A.
Merlone
, “
Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K
,”
Metrologia
41
,
74
(
2004
).
15.
L.
Pitre
,
M. R.
Moldover
, and
W. L.
Tew
, “
Acoustic thermometry: New results from 273 K to 77 K and progress towards 4 K
,”
Metrologia
43
,
142
(
2006
).
16.
K.
Zhang
,
X. J.
Feng
,
J. T.
Zhang
,
Y. Y.
Duan
,
H.
Lin
, and
Y. N.
Duan
, “
Determination of TT90 from 234 K to 303 K by acoustic thermometry with a cylindrical resonator
,”
Metrologia
57
,
024004
(
2020
).
17.
C.
Gaiser
and
B.
Fellmuth
, “
Highly-accurate second-virial-coefficient values for helium from 3.7 K to 273 K determined by dielectric-constant gas thermometry
,”
Metrologia
58
,
015013
(
2021
).
18.
C.
Gaiser
et al, “
2022 update for the differences between thermodynamic temperature and ITS-90 below 335 K
,”
J. Phys. Chem. Ref. Data
51
,
043105
(
2022
).
19.
H. C.
McEvoy
et al, “
Methodologies and uncertainty estimates for TT90 measurements over the temperature range from 430 K to 1358 K under the auspices of the EMPIR InK2 project
,”
Meas. Sci. Technol.
32
,
035001
(
2020
).
20.
J.
Fischer
,
M.
de Podesta
,
K. D.
Hill
,
M.
Moldover
,
L.
Pitre
,
R.
Rusby
,
P.
Steur
,
O.
Tamura
,
R.
White
, and
L.
Wolber
, “
Present estimates of the differences between thermodynamic temperatures and the ITS-90
,”
Int. J. Thermophys.
32
,
12
(
2011
).
21.
X. J.
Feng
,
K. A.
Gillis
,
M. R.
Moldover
, and
J. B.
Mehl
, “
Microwave-cavity measurements for gas thermometry up to the copper point
,”
Metrologia
50
,
219
(
2013
).
22.
K.
Zhang
,
X. J.
Feng
,
K.
Gillis
,
M.
Moldover
,
J. T.
Zhang
,
H.
Lin
,
J. F.
Qu
, and
Y. N.
Duan
, “
Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature
,”
Philos. Trans. R. Soc., A
374
,
20150049
(
2016
).
23.
L.
Pitre
,
F.
Sparasci
,
D.
Truong
,
A.
Guillou
,
L.
Risegari
, and
M. E.
Himbert
, “
Measurement of the Boltzmann constant kB using a quasi-spherical acoustic resonator
,”
Int. J. Thermophys.
32
,
1825
(
2011
).
24.
M.
de Podesta
,
R. J.
Underwood
,
G.
Sutton
,
P.
Morantz
,
P.
Harris
,
D. F.
Mark
,
F. M.
Stuart
,
G.
Vargha
, and
G.
Machin
, “
A low-uncertainty measurement of the Boltzmann constant
,”
Metrologia
50
,
354
(
2013
).
25.
R. M.
Gavioso
,
D.
Madonna Ripa
,
P. P. M.
Steur
,
C.
Gaiser
,
D.
Truong
,
C.
Guianvarc’h
,
P.
Tarizzo
,
F. M.
Stuart
, and
R.
Dematteis
, “
A determination of the molar gas constant R by acoustic thermometry in helium
,”
Metrologia
52
,
S274
(
2015
).
26.
P. J.
Mohr
,
D. B.
Newell
,
B. N.
Taylor
, and
E.
Tiesinga
, “
Data and analysis for the CODATA 2017 special fundamental constants adjustment
,”
Metrologia
55
,
125
(
2018
).
27.
L.
Pitre
et al, “
New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas
,”
Metrologia
54
,
856
(
2017
).
28.
M.
de Podesta
,
D. F.
Mark
,
R. C.
Dymock
,
R.
Underwood
,
T.
Bacquart
,
G.
Sutton
,
S.
Davidson
, and
G.
Machin
, “
Re-estimation of argon isotope ratios leading to a revised estimate of the Boltzmann constant
,”
Metrologia
54
,
683
(
2017
).
29.
F. J.
Pérez-Sanz
,
J. J.
Segovia
,
M. C.
Martín
,
M. A.
Villamañán
,
D.
del Campo
, and
C.
García
, “
Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa
,”
Metrologia
52
,
S257
(
2015
).
30.
X. J.
Feng
,
J. T.
Zhang
,
H.
Lin
,
K. A.
Gillis
,
J. B.
Mehl
,
M. R.
Moldover
,
K.
Zhang
, and
Y. N.
Duan
, “
Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: New and previous results combined
,”
Metrologia
54
,
748
(
2017
).
31.
J. T.
Zhang
,
H.
Lin
,
J. P.
Sun
,
X. J.
Feng
,
K. A.
Gillis
, and
M. R.
Moldover
, “
Cylindrical acoustic resonator for the re-determination of the Boltzmann constant
,”
Int. J. Thermophys.
31
,
1273
(
2010
).
32.
J. T.
Zhang
,
H.
Lin
,
X. J.
Feng
,
J. P.
Sun
,
K. A.
Gillis
,
M. R.
Moldover
, and
Y. Y.
Duan
, “
Progress toward redetermining the Boltzmann constant with a fixed-path-length cylindrical resonator
,”
Int. J. Thermophys.
32
,
1297
(
2011
).
33.
H.
Lin
,
X. J.
Feng
,
K. A.
Gillis
,
M. R.
Moldover
,
J. T.
Zhang
,
J. P.
Sun
, and
Y. Y.
Duan
, “
Improved determination of the Boltzmann constant using a single, fixed-length cylindrical cavity
,”
Metrologia
50
,
417
(
2013
).
34.
B. F.
Billing
and
T. J.
Quinn
, “
Temperature measurement 1975: Invited and Contributed papers from the European Conference on Temperature Measurement held at the National Physical Laboratory, Teddington, 9–11 April 1975
,”
Phys. Bull.
27
,
406
(
1976
).
35.
T. J.
Quinn
,
Temperature
(
Academic Press
,
London
,
1983
).
36.
E.
Tiesinga
,
P. J.
Mohr
,
D. B.
Newell
, and
B. N.
Taylor
, “
CODATA recommended values of the fundamental physical constants: 2018
,”
J. Phys. Chem. Ref. Data
50
,
033105
(
2021
).
37.
F.
Sharipov
and
M. R.
Moldover
, “
Energy accommodation coefficient extracted from acoustic resonator experiments
,”
J. Vac. Sci. Technol. A.
34
,
061604
(
2016
).
38.
M. R.
Moldover
,
R. M.
Gavioso
,
J. B.
Mehl
,
L.
Pitre
,
M.
de Podesta
, and
J. T.
Zhang
, “
Acoustic gas thermometry
,”
Metrologia
51
,
R1
(
2014
).
39.
H.
Lin
,
K. A.
Gillis
, and
J. T.
Zhang
, “
Characterization of piezoelectric ceramic transducer for accurate speed-of-sound measurement
,”
Int. J. Thermophys.
31
,
1234
(
2010
).
40.
K. A.
Gillis
,
H.
Lin
, and
M. R.
Moldover
, “
Perturbations from ducts on the modes of acoustic thermometers
,”
J. Res. Natl. Inst. Stand. Technol.
114
,
263
(
2009
).
41.
M. B.
Ewing
,
A. A.
Owusu
, and
J. P. M.
Trusler
, “
Second acoustic virial coefficients of argon between 100 and 304 K
,”
Physica A
156
,
899
(
1989
).
42.
M. B.
Ewing
and
A. R. H.
Goodwin
, “
An apparatus based on a spherical resonator for measuring the speed of sound in gases at high pressures. Results for argon at temperatures between 255 K and 300 K and at pressures up to 7 MPa
,”
J. Chem. Thermodyn.
24
,
531
(
1992
).
43.
X. J.
Feng
,
H.
Lin
,
K. A.
Gillis
,
M. R.
Moldover
, and
J. T.
Zhang
, “
Test of a virtual cylindrical acoustic resonator for determining the Boltzmann constant
,”
Metrologia
52
,
S343
(
2015
).
44.
K.
Zhang
,
X. J.
Feng
,
J. T.
Zhang
,
H.
Lin
,
Y. N.
Duan
, and
Y. Y.
Duan
, “
Microwave measurements of the length and thermal expansion of a cylindrical resonator for primary acoustic gas thermometry
,”
Meas. Sci. Technol.
28
,
015006
(
2016
).
45.
G.
Sutton
,
R.
Underwood
,
L.
Pitre
,
M.
de Podesta
, and
S.
Valkiers
, “
Acoustic resonator experiments at the triple point of water: First results for the Boltzmann constant and remaining challenges
,”
Int. J. Thermophys.
31
,
1310
(
2010
).
46.
J. J.
Segovia
,
D.
Lozano-Martín
,
M. C.
Martín
,
C. R.
Chamorro
,
M. A.
Villamañán
,
E.
Pérez
,
C. G.
Izquierdo
, and
D.
del Campo
, “
Updated determination of the molar gas constant R by acoustic measurements in argon at UVa-CEM
,”
Metrologia
54
,
663
(
2017
).
47.
A. F.
Estrada-Alexanders
,
O.
Guzmán
, and
B.
Pérez-Vidal
, “
High-precision virial coefficients of argon and carbon dioxide from integration of speed of sound data in the pressure–temperature domain
,”
Mol. Phys.
110
,
1349
(
2012
).
48.
B.
Jäger
,
R.
Hellmann
,
E.
Bich
, and
E.
Vogel
, “
Ab initio virial equation of state for argon using a new nonadditive three-body potential
,”
J. Chem. Phys.
135
,
084308
(
2011
).
50.
H.
Lin
,
X. J.
Feng
, and
J. T.
Zhang
, “
Perturbation measurement of waveguides for acoustic thermometry
,”
AIP Conf. Proc.
1552
,
39
(
2013
).
51.
H. H.
Chen
,
X. J.
Feng
,
H.
Lin
,
J. T.
Zhang
,
C.
Ren
, and
K. J.
Wang
, “
Study on optimal design of acoustic conduit in gas acoustic thermometer
,”
Acta Metrol. Sin.
40
,
7
(
2019
).
52.
E. W.
Lemmon
,
I. H.
Bell
,
M. L.
Huber
, and
M. O.
McLinden
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,
National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg
,
2018
.
53.
D. C.
Ripple
,
D. R.
Defibaugh
,
M. R.
Moldover
, and
G. F.
Strouse
, “
Techniques for primary acoustic thermometry to 800 K
,”
AIP Conf. Proc.
684
,
25
(
2003
).
54.
E.
Vogel
, “
The viscosities of dilute Kr, Xe, and CO2 revisited: New experimental reference data at temperatures from 295 K to 690 K
,”
Int. J. Thermophys.
37
,
63
(
2016
).
55.
R.
Hellmann
,
B.
Jäger
, and
E.
Bich
, “
State-of-the-art ab initio potential energy curve for the xenon atom pair and related spectroscopic and thermophysical properties
,”
J. Chem. Phys.
147
,
034304
(
2017
).
You do not currently have access to this content.