Electron collision cross section data are complied from the literature for electron collisions with the nitrogen molecules, N2, N2+, and N2*. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, rotational excitation, vibrational excitation, electronic excitation, dissociative processes, and ionization. The literature has been surveyed up to the end of 2021. For each of these processes, the recommended values of the cross sections are presented.

1.
V. A.
Krasnopolsky
, “
Chemical composition of Titan’s atmosphere and ionosphere: Observations and the photochemical model
,”
Icarus
236
,
83
91
(
2014
).
2.
J. L.
Elliot
,
D. F.
Strobel
,
X.
Zhu
,
J. A.
Stansberry
,
L. H.
Wasserman
, and
O. G.
Franz
, “
The thermal structure of Triton’s middle atmosphere
,”
Icarus
143
,
425
428
(
2000
).
3.
V. A.
Krasnopolsky
, “
A photochemical model of Pluto’s atmosphere and ionosphere
,”
Icarus
335
,
113374
(
2020
).
4.
P. B.
Rimmer
and
S.
Rugheimer
, “
Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets
,”
Icarus
329
,
124
131
(
2019
).
5.
A.
Tsiaras
,
I. P.
Waldmann
,
G.
Tinetti
,
J.
Tennyson
, and
S. N.
Yurchenko
, “
Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18b
,”
Nat. Astron.
3
,
1086
1091
(
2019
).
6.
R. A.
Armstrong
,
D. M.
Suszcynsky
,
W. A.
Lyons
, and
T. E.
Nelson
, “
Multi-color photometric measurements of ionization and energies in sprites
,”
Geophys. Res. Lett.
27
,
653
656
, (
2000
).
7.
V.
Guerra
,
P. A.
, and
J.
Loureiro
, “
Nitrogen pink afterglow: The mystery continues
,”
J. Phys.: Conf. Ser.
63
,
012007
(
2007
).
8.
B.
Gordiets
and
A.
Ricard
, “
Production of N, O and NO in N2-O2 flowing discharges
,”
Plasma Sources Sci. Technol.
2
,
158
163
(
1993
).
9.
Z.
Li
,
T.
Ozawa
,
I.
Sohn
, and
D. A.
Levin
, “
Modeling of electronic excitation and radiation in non-continuum hypersonic reentry flows
,”
Phys. Fluids
23
,
066102
(
2011
).
10.
J.
Annaloro
and
A.
Bultel
, “
Vibrational and electronic collisional-radiative model in air for Earth entry problems
,”
Phys. Plasmas
21
,
123512
(
2014
).
11.
I. N.
Kadochnikov
,
B. I.
Loukhovitski
, and
A. M.
Starik
, “
Thermally nonequilibrium effects in shock-induced nitrogen plasma: Modelling study
,”
Plasma Sources Sci. Technol.
22
,
035013
(
2013
).
12.
Z.
Lianzhu
,
Z.
Shuxia
, and
M.
Xiulan
, “
Characterization of nitrogen glow discharge plasma via optical emission spectrum simulation
,”
Plasma Sci. Technol.
10
,
455
462
(
2008
).
13.
C.-J.
Chen
and
S.-Z.
Li
, “
Investigation of a nitrogen post-discharge of an atmospheric-pressure microwave plasma torch by optical emission spectroscopy
,”
Phys. Plasmas
24
,
033512
(
2017
).
14.
J. M.
Ajello
,
J. S.
Evans
,
V.
Veibell
,
C. P.
Malone
,
G. M.
Holsclaw
,
A. C.
Hoskins
,
R. A.
Lee
,
W. E.
McClintock
,
S.
Aryal
,
R. W.
Eastes
, and
N.
Schneider
, “
The UV spectrum of the Lyman-Birge-Hopfield band system of N2 induced by cascading from electron impact
,”
J. Geophys. Res.: Space Phys.
125
,
e2019JA027546
, (
2020
).
15.
A. M.
Gatey
,
S. S.
Hosmani
,
S. B.
Arya
,
C. A.
Figueroa
, and
R. P.
Singh
, “
Plasma nitriding of AISI 2205 steel: Effects of surface mechanical attrition treatment and chemical etching
,”
Surf. Eng.
32
,
61
68
(
2016
).
16.
M.
Oberkofler
,
D.
Douai
,
S.
Brezinsek
,
J. W.
Coenen
,
T.
Dittmar
,
A.
Drenik
,
S. G.
Romanelli
,
E.
Joffrin
,
K.
McCormick
,
M.
Brix
,
G.
Calabro
,
M.
Clever
,
C.
Giroud
,
U.
Kruezi
,
K.
Lawson
,
C.
Linsmeier
,
A. M.
Rojo
,
A.
Meigs
,
S.
Marsen
,
R.
Neu
,
M.
Reinelt
,
B.
Sieglin
,
G.
Sips
,
M.
Stamp
, and
F. L.
Tabares
, “
First nitrogen-seeding experiments in JET with the ITER-like Wall
,”
J. Nucl. Mater.
438
,
S258
S261
(
2013
).
17.
C.
Pattyn
,
N.
Maira
,
A.
Remy
,
N. C.
Roy
,
S.
Iseni
,
D.
Petitjean
, and
F.
Reniers
, “
Potential of N2/O2 atmospheric pressure needle-water DC microplasmas for nitrogen fixation: Nitrite-free synthesis of nitrates
,”
Phys. Chem. Chem. Phys.
22
,
24801
24812
(
2020
).
18.
O.
Dutuit
,
N.
Carrasco
,
R.
Thissen
,
V.
Vuitton
,
C.
Alcaraz
,
P.
Pernot
,
N.
Balucani
,
P.
Casavecchia
,
A.
Canosa
,
S.
Le Picard
,
J.-C.
Loison
,
Z.
Herman
,
J.
Zabka
,
D.
Ascenzi
,
P.
Tosi
,
P.
Franceschi
,
S. D.
Price
, and
P.
Lavvas
, “
Critical review of N, N+, N2+, N++, and N2++ main production processes and reactions of relevance to Titan’s atmosphere
,”
Astrophys. J., Suppl. Ser.
204
,
20
(
2013
).
19.
A.
Bultel
and
J.
Annaloro
, “
Elaboration of collisional–radiative models for flows related to planetary entries into the Earth and Mars atmospheres
,”
Plasma Sources Sci. Technol.
22
,
025008
(
2013
).
20.
M.
Capitelli
,
G.
Colonna
,
G.
D’Ammando
,
V.
Laporta
, and
A.
Laricchiuta
, “
Nonequilibrium dissociation mechanisms in low temperature nitrogen and carbon monoxide plasmas
,”
Chem. Phys.
438
,
31
36
(
2014
).
21.
M.
Capitelli
,
R.
Celiberto
,
G.
Colonna
,
F.
Esposito
,
C.
Gorse
,
K.
Hassouni
,
A.
Laricchiuta
, and
S.
Longo
, “
Self-consistent kinetics of molecular plasmas: The nitrogen case
,” in
Fundamental Aspects of Plasma Chemical Physics: Kinetics
,
Springer Series on Atomic Optical and Plasma Physics Vol. 85
(
Springer
,
New York
,
2016
), pp.
223
245
.
22.
E.
Vervloessem
,
M.
Aghaei
,
F.
Jardali
,
N.
Hafezkhiabani
, and
A.
Bogaerts
, “
Plasma-based N2 fixation into NOx: Insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron
,”
ACS Sustainable Chem. Eng.
8
,
9711
9720
(
2020
).
23.
F.
Jardali
,
S.
Van Alphen
,
J.
Creel
,
H.
Ahmadi Eshtehardi
,
M.
Axelsson
,
R.
Ingels
,
R.
Snyders
, and
A.
Bogaerts
, “
NOx production in a rotating gliding arc plasma: Potential avenue for sustainable nitrogen fixation
,”
Green Chem.
23
,
1748
1757
(
2021
).
24.
S.
Van Alphen
,
F.
Jardali
,
J.
Creel
,
G.
Trenchev
,
R.
Snyders
, and
A.
Bogaerts
, “
Sustainable gas conversion by gliding arc plasmas: A new modelling approach for reactor design improvement
,”
Sustainable Energy Fuels
5
,
1786
1800
(
2021
).
25.
J.
Tennyson
,
S.
Mohr
,
M.
Hanicinec
,
A.
Dzarasova
,
C.
Smith
,
S.
Waddington
,
B.
Liu
,
L. L.
Alves
,
K.
Bartschat
,
A.
Bogaerts
,
S. U.
Engelmann
,
T.
Gans
,
A. R.
Gibson
,
S.
Hamaguchi
,
K. R.
Hamilton
,
C.
Hill
,
D.
O’Connell
,
S.
Rauf
,
K.
van ’t Veer
, and
O.
Zatsarinny
, “
The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions
,”
Plasma Sources Sci. Technol.
31
,
095020
(
2022
).
26.
Y.
Itikawa
, “
Cross sections for electron collisions with nitrogen molecules
,”
J. Phys. Chem. Ref. Data
35
,
31
53
(
2006
).
27.
T.
Tabata
,
T.
Shirai
,
M.
Sataka
, and
H.
Kubo
, “
Analytic cross sections for electron impact collisions with nitrogen molecules
,”
At. Data Nucl. Data Tables
92
,
375
406
(
2006
).
28.
S.
Kawaguchi
,
K.
Takahashi
, and
K.
Satoh
, “
Electron collision cross section set for N2 and electron transport in N2, N2/He, and N2/Ar
,”
Plasma Sources Sci. Technol.
30
,
035010
(
2021
).
29.
G. J.
Schulz
, “
Vibrational excitation of N2, CO, and H2 by electron impact
,”
Phys. Rev.
135
,
A988
(
1964
).
30.
R. E.
Kennerly
, “
Absolute total electron scattering cross sections for N2 between 0.5 and 50 eV
,”
Phys. Rev. A
21
,
1876
(
1980
).
31.
G. P.
Karwasz
,
R. S.
Brusa
, and
D.
Pliszka
, “
Energy scale determination and energy resolution in positron total cross section measurements
,”
J. Phys.: Conf. Ser.
199
,
012019
(
2010
).
32.
M.-Y.
Song
,
J.-S.
Yoon
,
H.
Cho
,
Y.
Itikawa
,
G. P.
Karwasz
,
V.
Kokoouline
,
Y.
Nakamura
, and
J.
Tennyson
, “
Cross sections for electron collisions with methane
,”
J. Phys. Chem. Ref. Data
44
,
023101
(
2015
).
33.
C.
Szmytkowski
,
K.
Maciag
, and
G.
Karwasz
, “
Absolute electron-scattering total cross section measurements for noble gas atoms and diatomic molecules
,”
Phys. Scr.
54
,
271
(
1996
).
34.
G.
Karwasz
,
R.
Brusa
, and
A.
Zecca
, “
6.1 total scattering cross section: Datasheet from Landolt-Börnstein—Group I elementary particles, nuclei and atoms
,” in
Interactions of Photons and Electrons with Molecules
,
Springer Materials Vol. 17C
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
).
35.
C.
Szmytkowski
and
P.
Możejko
, “
Recent total cross section measurements in electron scattering from molecules
,”
Eur. Phys. J. D
74
,
90
(
2020
).
36.
K. R.
Hoffman
,
M. S.
Dababneh
,
Y.-F.
Hsieh
,
W. E.
Kauppila
,
V.
Pol
,
J. H.
Smart
, and
T. S.
Stein
, “
Total-cross-section measurements for positrons and electrons colliding with H2, N2, and CO2
,”
Phys. Rev. A
25
,
1393
(
1982
).
37.
O.
Sueoka
and
S.
Mori
, “
Total cross sections for positrons and electrons colliding with N2, CO and CO2 molecules
,”
J. Phys. Soc. Jpn.
53
,
2491
(
1984
).
38.
M.
Kitajima
,
T.
Kishino
,
T.
Okumura
,
N.
Kobayashi
,
A.
Sayama
,
Y.
Mori
,
K.
Hosaka
,
T.
Odagiri
,
M.
Hoshino
, and
H.
Tanaka
, “
Low-energy and very-low energy total cross sections for electron collisions with N2
,”
Eur. Phys. J. D
71
,
139
(
2017
).
39.
W.
Sun
,
M. A.
Morrison
,
W. A.
Isaacs
,
W. K.
Trail
,
D. T.
Alle
,
R. J.
Gulley
,
M. J.
Brennan
, and
S. J.
Buckman
, “
Detailed theoretical and experimental analysis of low-energy electron-N2 scattering
,”
Phys. Rev. A
52
,
1229
1256
(
1995
).
40.
J.
Ferch
,
W.
Raith
, and
A.
Schweiker
, “
Total electron scattering cross sections for N2 at low electron energies
,” in
Abstracts XVII International Conference on Physics of Electronic and Atomic Collisions (Brisbane)
edited by I. E. McCarthy, M. C. Standage, and W. R. MacGillivray (A. Hilger, Bristol, 1991), p.
211
.
41.
A. I.
Lozano
,
J. C.
Oller
,
K.
Krupa
,
F.
Ferreira da Silva
,
P.
Limão-Vieira
,
F.
Blanco
,
A.
Muñoz
,
R.
Colmenares
, and
G.
García
, “
Magnetically confined electron beam system for high resolution electron transmission-beam experiments
,”
Rev. Sci. Instrum.
89
,
063105
(
2018
).
42.
K.
Jost
,
P. G. F.
Bisling
,
F.
Eschen
,
M.
Felsmann
, and
L.
Walther
, “
Total-cross-section measurements for electron scattering from N2, Xe, Kr and Ar
,” in
Abstracts XIII International Conference on Physics of Electronic and Atomic Collisions (Berlin),
edited by J. Eichler, W. Fritsch, I.V. Hertel, N. Stolterfoht, and U. Wille (North Holland, Berlin, 1983), p.
91
.
43.
S. V.
Hoffmann
,
S. L.
Lunt
,
N. C.
Jones
,
D.
Field
, and
J.-P.
Ziesel
, “
An undulator-based spherical grating monochromator beamline for low energy electron-molecule scattering experiments
,”
Rev. Sci. Instrum.
73
,
4157
4163
(
2002
).
44.
T.
Okumura
,
N.
Kobayashi
,
A.
Sayama
,
Y.
Mori
,
H.
Akasaka
,
K.
Hosaka
,
T.
Odagiri
,
M.
Hoshino
, and
M.
Kitajima
, “
Total cross-section for low-energy and very low-energy electron collisions with O2
,”
J. Phys. B: At., Mol. Opt. Phys.
52
,
035201
(
2019
).
45.
M.
Allan
, “
Excitation of vibrational levels up to ν = 17 in N2 by electron impact in the 0-5 eV region
,”
J. Phys. B: At., Mol. Opt. Phys.
18
,
4511
(
1985
).
46.
J. C.
Nickel
,
I.
Kanik
,
S.
Trajmar
, and
K.
Imre
, “
Total cross section measurements for electron scattering on H2 and N2 from 4 to 300 eV
,”
J. Phys. B: At., Mol. Opt. Phys.
25
,
2427
(
1992
).
47.
T. H.
Hoffman
,
M.
Allan
,
K.
Franz
,
M.-W.
Ruf
,
H.
Hotop
,
G.
Sauter
, and
W.
Meyer
, “
Resonance structure in electron–N2 scattering around 11.5 eV: High-resolution measurements, ab initio calculations and line shape analyses
,”
J. Phys. B: At., Mol. Opt. Phys.
42
,
215202
(
2009
).
48.
Z.
Idziaszek
and
G.
Karwasz
, “
Modified effective-range theory for low energy e-N2 scattering
,”
Eur. Phys. J. D
51
,
347
355
(
2009
).
49.
G.
Karwasz
,
R. S.
Brusa
,
A.
Gasparoli
, and
A.
Zecca
, “
Total cross-section measurements for e —CO scattering: 80–4000 eV
,”
Chem. Phys. Lett.
211
,
529
533
(
1993
).
50.
G.
García
,
A.
Pérez
, and
J.
Campos
, “
Total cross section for electron scattering from N2 in the energy range 600–5000 eV
,”
Phys. Rev. A
38
,
654
(
1988
).
51.
M.-Y.
Song
,
J.-S.
Yoon
,
H.
Cho
,
G. P.
Karwasz
,
V.
Kokoouline
,
Y.
Nakamura
, and
J.
Tennyson
, “
Electron collision cross sections with NO, N2O and NO2
,”
J. Phys. Chem. Ref. Data
48
,
043104
(
2019
).
52.
A.
Zecca
,
J. C.
Nogueira
,
G. P.
Karwasz
, and
R. S.
Brusa
, “
Total cross sections for electron scattering on NO2, OCS, SO2 at intermediate energies
,”
J. Phys. B: At., Mol. Opt. Phys.
28
,
477
(
1995
).
53.
S. K.
Srivastava
,
A.
Chutjian
, and
S.
Trajmar
, “
Absolute elastic differential electron scattering cross sections in the intermediate energy region. II.—N2
,”
J. Chem. Phys.
64
,
1340
1344
(
1976
).
54.
T. W.
Shyn
and
G. R.
Carignan
, “
Angular distribution of electrons elastically scattered from gases: 1.5-400 eV on N2. II
,”
Phys. Rev. A
22
,
923
929
(
1980
).
55.
W.
Sohn
,
K.-H.
Kochem
,
K.-M.
Scheuerlein
,
K.
Jung
, and
H.
Ehrhardt
, “
Near-threshold vibrational excitation and elastic electron scattering from N2
,”
J. Phys. B: At., Mol. Opt. Phys.
19
(
23
),
4017
(
1986
).
56.
J. C.
Nickel
,
C.
Mott
,
I.
Kanik
, and
D. C.
McCollum
, “
Absolute elastic differential electron scattering cross sections for carbon monoxide and molecular nitrogen in the intermediate energy region
,”
J. Phys. B: At., Mol. Opt. Phys.
21
,
1867
(
1988
).
57.
M. J.
Brennan
,
D. T.
Alle
,
P.
Euripides
,
S. J.
Buckman
, and
M. J.
Brunger
, “
Elastic electron scattering and rovibrational excitation of N2 at low incident energies
,”
J. Phys. B: At., Mol. Opt. Phys.
25
(
11
),
2669
(
1992
).
58.
X.
Shi
,
T. M.
Stephen
, and
P. D.
Burrow
, “
Differential cross sections for elastic scattering of electrons from N2 at 0.55, 1.5 and 2.2 eV
,”
J. Phys. B: At., Mol. Opt. Phys.
26
,
121
(
1993
).
59.
M.
Zubek
,
B.
Mielewska
, and
G. C.
King
, “
Absolute differential cross sections for electron elastic scattering and vibrational excitation in nitrogen in the angular range from 120 to 180
,”
J. Phys. B: At., Mol. Opt. Phys.
33
,
L527
(
2000
).
60.
M.
Allan
, “
Measurement of the elastic and v = 0 → 1 differential electron–N2 cross sections over a wide angular range
,”
J. Phys. B: At., Mol. Opt. Phys.
38
,
3655
3672
(
2005
).
61.
J.
Muse
,
H.
Silva
,
M. C. A.
Lopes
, and
M. A.
Khakoo
, “
Low energy elastic scattering of electrons from H2 and N2
,”
J. Phys. B: At., Mol. Opt. Phys.
41
,
095203
(
2008
).
62.
I.
Linert
and
M.
Zubek
, “
Differential cross sections for electron elastic scattering and vibrational v = 1 excitation in nitrogen in the energy range from 5 to 20 eV measured over an angular range of 100°-180°
,”
J. Phys. B: At., Mol. Opt. Phys.
42
,
085203
(
2009
).
63.
S. J.
Buckman
,
M.
Brunger
, and
M. T.
Elford
, “
6.2 integral elastic cross sections: Datasheet from Landolt-Börnstein—Group I elementary particles, nuclei and atoms
,” in
Interactions of Photons and Electrons with Molecules
,
Springer Materials Vol. 17C
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
).
64.
R. D.
DuBois
and
M. E.
Rudd
, “
Differential cross sections for elastic scattering of electrons from argon, neon, nitrogen and carbon monoxide
,”
J. Phys. B: At., Mol. Opt. Phys.
9
,
2657
2667
(
1976
).
65.
M. T.
Elford
,
S. J.
Buckman
, and
M.
Brunger
, “
6.3 elastic momentum transfer cross sections: Datasheet from Landolt-Börnstein—Group I elementary particles, nuclei and atoms
,” in
Interactions of Photons and Electrons with Molecules
,
Springer Materials Vol. 17C
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
).
66.
G.
Haddad
, “
Cross sections for electron scattering in nitrogen
,”
Aust. J. Phys.
37
,
487
494
(
1984
).
67.
L.
Landau
and
E.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Butterworth Heinemann
,
Burlington, MA
,
2003
).
68.
Y.
Itikawa
and
N.
Mason
, “
Rotational excitation of molecules by electron collisions
,”
Phys. Rep.
414
,
1
41
(
2005
).
69.
H.
Kutz
and
H.-D.
Meyer
, “
Rotational excitation of N2 and Cl2 molecules by electron impact in the energy range 0.01–1000 eV: Investigation of excitation mechanisms
,”
Phys. Rev. A
51
,
3819
(
1995
).
70.
M. A.
Morrison
,
W.
Sun
,
W. A.
Isaacs
, and
W. K.
Trail
, “
Ultrasimple calculation of very-low-energy momentum-transfer and rotational-excitation cross sections: e-N2 scattering
,”
Phys. Rev. A
55
,
2786
(
1997
).
71.
S.
Telega
,
E.
Bodo
, and
F. A.
Gianturco
, “
Rotationally inelastic collisions of electrons with H2 and N2 molecules: Converged space-frame calculations at low energies
,”
Eur. Phys. J. D
29
,
357
365
(
2004
).
72.
M.
Šulc
,
R.
Čurík
,
J.-P.
Ziesel
,
N. C.
Jones
, and
D.
Field
, “
A new type of interference phenomenon in cold collisions of electrons with N2
,”
J. Phys. B: At., Mol. Opt. Phys.
44
,
195204
(
2011
).
73.
L. L.
Alves
, “
The IST-LISBON database on LXCat
,”
J. Phys.: Conf. Ser.
565
,
012007
(
2014
).
74.
Z.
Mašín
,
J.
Benda
,
J. D.
Gorfinkiel
,
A. G.
Harvey
, and
J.
Tennyson
, “
UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method
,”
Comput. Phys. Commun.
249
,
107092
(
2020
).
75.
B.
Cooper
,
M.
Tudorovskaya
,
S.
Mohr
,
A.
O’Hare
,
M.
Hanicinec
,
A.
Dzarasova
,
J.
Gorfinkiel
,
J.
Benda
,
Z.
Mašín
,
A.
Al-Refaie
,
P. J.
Knowles
, and
J.
Tennyson
, “
Quantemol electron collisions (QEC): An enhanced expert system for performing electron molecule collision calculations using the R-matrix method
,”
Atoms
7
,
97
(
2019
).
76.
H.
Tanaka
,
T.
Yamamoto
, and
T.
Okada
, “
Electron impact cross sections for ν = 0 → 1 vibrational excitation of N2 at electron energies from 3 to 30 eV
,”
J. Phys. B: At., Mol. Opt. Phys.
14
(
12
),
2081
(
1981
).
77.
V.
Laporta
,
D. A.
Little
,
R.
Celiberto
, and
J.
Tennyson
, “
Electron-impact resonant vibrational excitation and dissociation processes involving vibrationally excited N2 molecules
,”
Plasma Sources Sci. Technol.
23
,
065002
(
2014
).
78.
M.
Vicic
,
G.
Poparic
, and
D. S.
Belic
, “
Large vibrational excitation of by low-energy electrons
,”
J. Phys. B: At., Mol. Opt. Phys.
29
,
1273
(
1996
).
79.
Y.
Ohmori
,
M.
Shimozuma
, and
H.
Tagashira
, “
Boltzmann equation analysis of electron swarm behaviour in nitrogen
,”
J. Phys. D: Appl. Phys.
21
,
724
729
(
1988
).
80.
A. V.
Phelps
and
L. C.
Pitchford
, “
Anisotropic scattering of electrons by N2 and its effect on electron transport
,”
Phys. Rev. A
31
,
2932
2949
(
1985
).
81.
C. J.
Gillan
,
J.
Tennyson
,
B. M.
McLaughlin
, and
P. G.
Burke
, “
Low-energy electron impact excitation of the nitrogen molecule: Optically forbidden transitions
,”
J. Phys. B: At., Mol. Opt. Phys.
29
,
1531
1547
(
1996
).
82.
M.
Tashiro
and
K.
Morokuma
, “
R-matrix calculation of integral and differential cross sections for low-energy electron-impact excitations of the N2 molecule
,”
Phys. Rev. A
75
,
012720
(
2007
).
83.
R. F.
Da Costa
and
M. A. P.
Lima
, “
Excitation of the a1Πg and B3Πg electronic states of the nitrogen molecule by electron impact
,”
Int. J. Quantum Chem.
106
,
2664
2676
(
2006
).
84.
H.
Su
,
X.
Cheng
,
H.
Zhang
, and
J.
Tennyson
, “
Electron collisions with molecular nitrogen in its ground and electronically excited states using the R-matrix method
,”
J. Phys. B: At., Mol. Opt. Phys.
54
,
115203
(
2021
).
85.
H.
Su
,
X.
Cheng
,
B.
Cooper
,
J.
Tennyson
, and
H.
Zhang
, “
Electron-impact high-lying N2 resonant states
,”
Phys. Rev. A
105
,
062824
(
2022
).
86.
J.
Oddershede
,
N. E.
Grūner
, and
G. H. F.
Diercksen
, “
Comparison between equation of motion and polarization propagator calculations
,”
Chem. Phys.
97
,
303
310
(
1985
).
87.
M. A.
Khakoo
,
P. V.
Johnson
,
I.
Ozkay
,
P.
Yan
,
S.
Trajmar
, and
I.
Kanik
, “
Differential cross sections for the electron impact excitation of the A3Σu+, B3Πg, W3Δu, B3Σu, a1Σu, a1Πg, w1Δu, and C3Πu states of N2
,”
Phys. Rev. A
71
,
062703
(
2005
).
88.
P. V.
Johnson
,
C. P.
Malone
,
I.
Kanik
,
K.
Tran
, and
M. A.
Khakoo
, “
Integral cross sections for the direct excitation of the A 3Σu+, B 3Πg, W 3Δu, B′ 3Σu, a′ 1Σu, a 1Πg, w 1Δu, and C 3Πu electronic states in N2 by electron impact
,”
J. Geophys. Res.
110
,
A11311
, (
2005
).
89.
S.
Trajmar
,
D. F.
Register
, and
A.
Chutjian
, “
Electron scattering by molecules II. Experimental methods and data
,”
Phys. Rep.
97
,
219
(
1983
).
90.
C. P.
Malone
,
P. V.
Johnson
,
X.
Liu
,
B.
Ajdari
,
I.
Kanik
, and
M. A.
Khakoo
, “
Integral cross sections for the electron-impact excitation of the b1Πu, c3 1Πu, o3 1Πu, b1Σu+, c41Σu+, G3Πu, and F3Πu states of N2
,”
Phys. Rev. A
85
,
062704
(
2012
).
91.
L.
Campbell
,
M. J.
Brunger
,
A. M.
Nolan
,
L. J.
Kelly
,
A. B.
Wedding
,
J.
Harrison
,
P. J. O.
Teubner
,
D. C.
Cartwright
, and
B.
McLaughlin
, “
Integral cross sections for electron impact excitation of electronic states of N2
,”
J. Phys. B: At., Mol. Opt. Phys.
34
,
1185
1199
(
2001
).
92.
C. P.
Malone
,
P. V.
Johnson
,
J. A.
Young
,
X.
Liu
,
B.
Ajdari
,
M. A.
Khakoo
, and
I.
Kanik
, “
Integral cross sections for electron-impact excitation of the C3Πu, E3Σ+g and a1Σg+ states of N2
,”
J. Phys. B: At., Mol. Opt. Phys.
42
,
225202
(
2009
).
93.
H.
Tanaka
,
M. J.
Brunger
,
L.
Campbell
,
H.
Kato
,
M.
Hoshino
, and
A. R. P.
Rau
, “
Scaled plane-wave Born cross sections for atoms and molecules
,”
Rev. Mod. Phys.
88
,
025004
(
2016
).
94.
E. N.
Lassettre
, “
Power series representation of generalized oscillator strengths
,”
J. Chem. Phys.
43
,
4479
4486
(
1965
).
95.
Y.-G.
Peng
,
X.
Kang
,
K.
Yang
,
X.-L.
Zhao
,
Y.-W.
Liu
,
X.-X.
Mei
,
W.-Q.
Xu
,
N.
Hiraoka
,
K.-D.
Tsuei
, and
L.-F.
Zhu
, “
Squared form factors of vibronic excitations in 12–13.3 eV of nitrogen studied by high-resolution inelastic x-ray scattering
,”
Phys. Rev. A
89
,
032512
(
2014
).
96.
Y. W.
Liu
,
L. Q.
Xu
,
D. D.
Ni
,
X.
Xu
,
X. C.
Huang
, and
L. F.
Zhu
, “
Integral cross sections of the dipole-allowed excitations of nitrogen molecule studied by the fast electron scattering
,”
J. Geophys. Res.: Space Phys.
122
,
3459
3468
, (
2017
).
97.
H. J.
Blaauw
,
R. W.
Wagenaar
,
D. H.
Barends
, and
F. J.
de Heer
, “
Total cross sections for electron scattering from N2 and He
,”
J. Phys. B: Atom. Mol. Phys.
13
,
359
(
1980
).
98.
N. J.
Mason
and
W. R.
Newell
, “
Electron impact total excitation cross section of the a1Πg state of N2
,”
J. Phys. B: At., Mol. Opt. Phys.
20
,
3913
(
1987
).
99.
M.
Zubek
, “
Excitation of the C3Πu state of N2 by electron impact in the near-threshold region
,”
J. Phys. B: At., Mol. Opt. Phys.
27
,
573
(
1994
).
100.
D. C.
Frost
and
C. A.
McDowell
, “
The dissociation energy of the nitrogen molecule
,”
Proc. R. Soc. A
236
,
278
284
(
1956
).
101.
P. C.
Cosby
, “
Electron-impact dissociation of nitrogen
,”
J. Chem. Phys.
98
,
9544
(
1993
).
102.
J.
Almlöf
,
B. J.
Deleeuw
,
P. R.
Taylor
,
C. W.
Bauschlicher
, Jr.
, and
P.
Siegbahn
, “
The dissociation energy of N2
,”
Int. J. Quantum Chem.
36
,
345
354
(
1989
).
103.
K. L.
Heritier
,
R. L.
Jaffe
,
V.
Laporta
, and
M.
Panesi
, “
Energy transfer models in nitrogen plasmas: Analysis of N2(X 1Σg+)–N(4Su)–e interaction
,”
J. Chem. Phys.
141
,
184302
(
2014
).
104.
U.
Bley
,
M.
Koch
,
F.
Temps
,
P. B.
Davies
, and
I. H.
Davis
, “
Measurement of the 2D5/22D3/2 fine structure interval in metastable nitrogen atoms at 1.15 mm by laser magnetic resonance
,”
J. Chem. Phys.
90
,
628
632
(
1989
).
105.
H. F.
Winters
, “
Ionic adsorption and dissociation cross section for nitrogen
,”
J. Chem. Phys.
44
,
1472
1476
(
1966
).
106.
D.
Rapp
and
P.
Englander‐Golden
, “
Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization
,”
J. Chem. Phys.
43
,
1464
1479
(
1965
).
107.
E. C.
Zipf
and
R. W.
McLaughlin
, “
On the dissociation of nitrogen by electron impact and by E.U.V. photo-absorption
,”
Planet. Space Sci.
26
,
449
462
(
1978
).
108.
L.
Mi
and
R. A.
Bonham
, “
Electron–ion coincidence measurements: The neutral dissociation plus excitation cross section for N2
,”
J. Chem. Phys.
108
,
1904
1909
(
1998
).
109.
C.
Tian
and
C. R.
Vidal
, “
Electron impact ionization of N2 and O2: Contributions from different dissociation channels of multiply ionized molecules
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
5369
5381
(
1998
).
110.
T.
Majeed
and
D. J.
Strickland
, “
New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations
,”
J. Phys. Chem. Ref. Data
26
,
335
349
(
1997
).
111.
H. C.
Straub
,
P.
Renault
,
B. G.
Lindsay
,
K. A.
Smith
, and
R. F.
Stebbings
, “
Absolute partial cross sections for electron-impact ionization of H2, N2, and O2 from threshold to 1000 eV
,”
Phys. Rev. A
54
,
2146
2153
(
1996
).
112.
B. L.
Schram
,
F. J.
de Heer
,
M. J.
van der Wiel
, and
J.
Kistemaker
, “
Ionization cross sections for electrons (0.6–20 keV) in noble and diatomic gases
,”
Physica
31
,
94
(
1965
).
113.
T. D.
Märk
, “
Cross section for single and double ionization of N2 and O2 molecules by electron impact from threshold up to 170 eV
,”
J. Chem. Phys.
63
,
3731
(
1975
).
114.
S.
Halas
and
B.
Adamczyk
, “
Cross sections for the production of N2+, N+ and N22+ from nitrogen by electrons in the energy range 16–600 eV
,”
Int. J. Mass Spectrom. Ion Phys.
10
,
157
160
(
1972
).
115.
A.
Crowe
and
J. W.
McConkey
, “
Dissociative ionization by electron impact. IV. Energy and angular distributions of N2+ from N2
,”
J. Phys. B: At., Mol. Opt. Phys.
8
,
1765
(
1975
).
116.
E.
Krishnakumar
and
S. K.
Srivastava
, “
Cross sections for the production of N+2, N+ + N2+2 and N2+ by electron impact on N2
,”
J. Phys. B: At., Mol. Opt. Phys.
23
(
11
),
1893
(
1990
).
117.
J. N.
Bull
,
J. W. L.
Lee
, and
C.
Vallance
, “
Electron ionization dynamics of N2 and O2 molecules: Velocity-map imaging
,”
Phys. Rev. A
91
,
022704
(
2015
).
118.
Z.
Shen
,
E.
Wang
,
M.
Gong
,
X.
Shan
, and
X.
Chen
, “
Electron-impact ionization cross sections for nitrogen molecule from 250 to 8000 eV
,”
J. Electron Spectrosc. Relat. Phenom.
225
,
42
48
(
2018
).
119.
B.
Lindsay
and
M.
Mangan
, “
5.1 ionization: Datasheet from Landolt-Börnstein—Group I elementary particles, nuclei and atoms
,” in
Interactions of Photons and Electrons with Molecules
,
Springer Materials Vol. 17C
(
Springer-Verlag
,
Berlin, Heidelberg
,
2003
).
120.
R. F.
Stebbings
and
B. G.
Lindsay
, “
Comment on the accuracy of absolute electron-impact ionization cross sections for molecules
,”
J. Chem. Phys.
114
,
4741
4743
(
2001
).
121.
R. R.
Goruganthu
,
W. G.
Wilson
, and
R. A.
Bonham
, “
Secondary-electron-production cross sections for electron-impact ionization of molecular nitrogen
,”
Phys. Rev. A
35
,
540
(
1987
).
122.
J. E.
Hudson
,
M. L.
Hamilton
,
C.
Vallance
, and
P. W.
Harland
, “
Absolute electron impact ionization cross-sections for the C1 to C4 alcohols
,”
Phys. Chem. Chem. Phys.
5
,
3162
3168
(
2003
).
123.
W.
Hwang
,
Y.-K.
Kim
, and
M. E.
Rudd
, “
New model for electron-impact ionization cross sections of molecules
,”
J. Chem. Phys.
104
,
2956
2966
(
1996
).
124.
R. S.
Freund
,
R. C.
Wetzel
, and
R. J.
Shul
, “
Measurements of electron-impact-ionization cross sections of N2, CO, CO2, CS, S2, CS2, and metastable N2
,”
Phys. Rev. A
41
,
5861
5868
(
1990
).
125.
J. P.
Doering
and
L.
Goembel
, “
Direct experimental measurement of electron impact ionization-excitation branching ratios: 1. Results for N2 at 100 eV
,”
J. Geophys. Res.: Space Phys.
96
,
16025
16030
, (
1991
).
126.
J. P.
Doering
and
J.
Yang
, “
Direct experimental measurement of electron impact ionization-excitation branching ratios: 3. Branching ratios and cross sections for the N2+ X 2Σg+, A 2Πu, and B 2Σu+ states at 100 eV
,”
J. Geophys. Res.: Space Phys.
102
,
9683
9689
, (
1997
).
127.
L.
Goembel
,
J.
Yang
, and
J. P.
Doering
, “
Direct experimental measurement of electron impact ionization-excitation branching ratios: 2. Angular distribution of secondary electrons from N2 at 100 eV
,”
J. Geophys. Res.: Space Phys.
99
,
17477
17481
, (
1994
).
128.
T. G.
Finn
and
J. P.
Doering
, “
Elastic scattering of 13 to 100 eV electrons from N2
,”
J. Chem. Phys.
63
,
4399
(
1975
).
129.
N.
Abramzon
,
R. B.
Siegel
, and
K.
Becker
, “
Absolute cross section for the formation of N2+ (X 2Σg+) ions produced by electron impact on N2
,”
J. Phys. B: At., Mol. Opt. Phys.
32
,
L247
(
1999
).
130.
N.
Abramzon
,
R. B.
Siegel
, and
K.
Becker
, “
Cross section for the production of N2+ (X 2Σg+) ions by electron impact on N2
,”
Int. J. Mass Spectrom.
188
,
147
153
(
1999
).
131.
N.
Ferreira
,
L.
Sigaud
,
V. L. B.
de Jesus
,
A. B.
Rocha
,
L. H.
Coutinho
, and
E. C.
Montenegro
, “
Fragmentation of 14,15N2 by electron impact investigated using a time-delayed spectroscopic technique
,”
Phys. Rev. A
86
,
012702
(
2012
).
132.
L.
Sigaud
and
E. C.
Montenegro
, “
Highly selective mechanisms for the production of N2 and O2 dications by electron impact
,”
Phys. Rev. A
98
,
052701
(
2018
).
133.
J. N.
Bull
,
J. W. L.
Lee
, and
C.
Vallance
, “
Quantification of ions with identical mass-to-charge (m/z) ratios by velocity-map imaging mass spectrometry
,”
Phys. Chem. Chem. Phys.
15
,
13796
13800
(
2013
).
134.
Y.
Zhang
,
X.
Wang
,
L. F.
Zhu
,
D.
Lu
,
R.
Hutton
,
Y.
Zou
, and
B.
Wei
, “
Dissociative ionization of N2 by fast electron impact: Roles of molecular orbitals
,”
J. Phys. B: At., Mol. Opt. Phys.
50
,
205202
(
2017
).
135.
T.
Trickl
,
E. F.
Cromwell
,
Y. T.
Lee
, and
A. H.
Kung
, “
State-selective ionization of nitrogen in the X2+g v+= 0 and v+ =1 states by two-color (1+ 1) photon excitation near threshold
,”
J. Chem. Phys.
91
,
6006
6012
(
1989
).
136.
W. J.
Marinelli
,
W. J.
Kessler
,
B. D.
Green
, and
W. A. M.
Blumberg
, “
Quenching of N2(a 1Πg, ν′ = 0) by N2, O2, CO, CO2, CH4, H2, and Ar
,”
J. Chem. Phys.
90
,
2167
2173
(
1989
).
137.
W. J.
Marinelli
,
W. J.
Kessler
,
B. D.
Green
, and
W. A. M.
Blumberg
, “
The radiative lifetime of N2(a 1Πg, ν = 0–2)
,”
J. Chem. Phys.
91
,
701
707
(
1989
).
138.
A.
Dora
and
J.
Tennyson
, “
Electron collisions with CO molecule: Potential energy curves of higher lying CO resonant states
,”
J. Phys. B: At., Mol. Opt. Phys.
53
,
195202
(
2020
).
139.
F.
Paniccia
,
C.
Gorse
,
M.
Cacciatore
, and
M.
Capitelli
, “
Nonequilibrium ionization of nitrogen: The role of stepwise ionization from metastable states in the presence of superelastic electronic collisions
,”
J. Appl. Phys.
61
,
3123
3126
(
1987
).
140.
D.
Gupta
,
H.
Choi
,
M.-Y.
Song
,
G. P.
Karwasz
, and
J.-S.
Yoon
, “
Electron impact ionization cross section studies of C2Fx(x = 1–6) and C3Fx(x = 1–8) fluorocarbon species
,”
Eur. Phys. J. D
71
,
88
(
2017
).
141.
A.
Laricchiuta
,
R.
Celiberto
, and
G.
Colonna
, “
Electron impact ionization of metastable states of diatomic molecules
,”
Atoms
10
,
2
(
2022
).
142.
P. B.
Armentrout
,
S. M.
Tarr
,
A.
Dori
, and
R. S.
Freund
, “
Electron impact ionization cross section of metastable N2(AΣu+)
,”
J. Chem. Phys.
75
,
2786
2794
(
1981
).
143.
M.-Y.
Lin
and
R.
Ilie
, “
A review of observations of molecular ions in the Earth’s magnetosphere-ionosphere system
,”
Front. Astron. Space Sci.
8
,
745357
(
2022
).
144.
L.
Campbell
,
D. C.
Cartwright
,
M. J.
Brunger
, and
P. J. O.
Teubner
, “
Role of electronic excited N2 in vibrational excitation of the N2 ground state at high latitudes
,”
J. Geophys. Res.: Space Phys.
111
,
A09317
, (
2006
).
145.
C. H.
Sheehan
and
J.-P.
St.-Maurice
, “
Dissociative recombination of N2+, O2+, and NO+: Rate coefficients for ground state and vibrationally excited ions
,”
J. Geophys. Res.: Space Phys.
109
,
A03302
, (
2004
).
146.
D. A.
Little
,
K.
Chakrabarti
,
J. Z.
Mezei
,
I. F.
Schneider
, and
J.
Tennyson
, “
Dissociative recombination of N2+: An ab initio study
,”
Phys. Rev. A
90
,
052705
(
2014
).
147.
J. R.
Peterson
,
A.
Le Padellec
,
H.
Danared
,
G. H.
Dunn
,
M.
Larsson
,
A.
Larson
,
R.
Peverall
,
C.
Strömholm
,
S.
Rosén
,
M.
af Ugglas
, and
W. J.
van der Zande
, “
Dissociative recombination and excitation of N2+: Cross sections and product branching ratios
,”
J. Chem. Phys.
108
,
1978
1988
(
1998
).
148.
C.
Noren
,
F. B.
Yousif
, and
J. B. A.
Mitchell
, “
Dissociative recombination and excitation of N2+
,”
J. Chem. Soc., Faraday Trans. 2
85
,
1697
1703
(
1989
).
149.
P. M.
Mul
and
J. W.
McGowan
, “
Merged electron-ion beam experiments. III. Temperature dependence of dissociative recombination for atmospheric ions NO+, O2+ and N2+
,”
J. Phys. B: At., Mol. Opt. Phys.
12
,
1591
(
1979
).
150.
S. L.
Guberman
, “
The vibrational dependence of dissociative recombination: Cross sections for N2+
,”
J. Chem. Phys.
139
,
124318
(
2013
).
151.
A.
Abdoulanziz
,
C.
Argentin
,
V.
Laporta
,
K.
Chakrabarti
,
A.
Bultel
,
J.
Tennyson
,
I. F.
Schneider
, and
J. Z.
Mezei
, “
Low-energy electron impact dissociative recombination and vibrational transitions of N2+
,”
J. Appl. Phys.
129
,
053303
(
2021
).
152.
S. L.
Guberman
, “
The vibrational dependence of dissociative recombination: Rate constants for N2+
,”
J. Chem. Phys.
141
,
204307
(
2014
).
153.
F. J.
Mehr
and
M. A.
Biondi
, “
Electron temperature dependence of recombination of O2+ and N2+ ions with electrons
,”
Phys. Rev.
181
,
264
(
1969
).
154.
M.
Fifirig
, “
Dissociation of 14N2+ ions induced by slow electrons
,”
Mol. Phys.
112
,
1910
1917
(
2014
).
155.
E. M.
Bahati
,
J. J.
Jureta
,
D. S.
Belic
,
H.
Cherkani-Hassani
,
M. O.
Abdellahi
, and
P.
Defrance
, “
Electron impact dissociation and ionization of N2+
,”
J. Phys. B: At., Mol. Opt. Phys.
34
,
2963
2973
(
2001
).
156.
Y. K.
Kim
,
K. K.
Irikura
, and
M. A.
Ali
, “
Electron-impact total ionization cross sections of molecular ions
,”
J. Res. Natl. Inst. Stand. Technol.
105
,
285
(
2000
).
157.
M.-Y.
Song
,
J.-S.
Yoon
,
H.
Cho
,
G. P.
Karwasz
,
V.
Kokoouline
,
Y.
Nakamura
, and
J.
Tennyson
, “‘
Recommended’ cross sections for electron collisions with molecules
,”
Eur. Phys. J. D
74
,
60
(
2020
).

Supplementary Material

You do not currently have access to this content.