High-temperature tracer diffusion coefficients for H3O+ and OH are important parameters in the modeling of diffusion-controlled reaction kinetics and mass transport processes under hydrothermal conditions, and these tracer diffusion coefficients are directly related to the ionic electrical conductivities in the limit of infinite dilution through the Nernst–Einstein relationship. The limiting conductivity of H3O+ and OH in water is controlled by two separate mechanisms of ionic movement: (i) the bulk ionic diffusion and (ii) proton hopping, also known as “Grotthuss” mechanism and/or “prototropic transfer.” This work reports a critical assessment of the limiting electrical conductivity data (Λ°) for aqueous HCl, KOH, and NaOH measured above room temperature. The initial assessed dataset included temperatures from 273.15 K up to 873.15 K and water densities from 1000 kg m−3 down to 270 kg m−3 and was reduced down to a final critically evaluated dataset spanning temperatures between 273.15 and 678.15 K and densities between 346 and 1006 kg m−3. The results were used to derive values for the excess conductivity due to prototropic transfer, λE°, of H3O+ and OH using correlations previously reported for aqueous KCl. Simple empirical correlations of water viscosity and density were derived for Λ°(HCl), Λ°(KOH), Λ°(NaOH), λE°(H3O+), and λE°(OH). Tests using the λE°(OH) correlation and a previously reported function for Λ°(NaCl) show that the NaOH data can be accurately reproduced to within the estimated uncertainties. The reported correlations provide a means to model more accurately the tracer diffusion coefficients for H3O+ and OH to supercritical conditions.

You do not currently have access to this content.